Supersonic metal cluster beams of refractory metals: Spectral investigations of ultracold Mo2

296Citations
Citations of this article
45Readers
Mendeley users who have this article in their library.
Get full text

Abstract

A novel technique involving pulsed laser vaporization of the bulk metal within a pulsed supersonic nozzle has been shown to successfully produce ultracold bare metal clusters of even the most refractory of metals, tungsten and molybdenum. Clusters of up to 25 atoms may be readily prepared using this technique. Mass-selective resonant two-photon ionization spectra of Mo 2 produced in this fashion show that the dimer is efficiently cooled in the expansion Ttrans, <6 K, Trot ∼5 K, and Tvib ∼325 K. We have rotationally resolved the A 1∑n+←X 1∑ g+ (0-0) band for 92Mo2 and determined the bond length in the ground and excited states to be 1.940±0.009 and 1.937±0.008 Å, respectively. This confirms and extends the analysis of Efremov et al. [J. Mol. Spectrosc. 73, 40 (1970)] who prepared 98Mo2 by flash photolysis of isotopically pure Mo(CO)6. We have also observed the (1-1), (2-2), and (3-3) sequence bands which together with the ground state data of Efremov et al. determine vibrational constants ω′e=449.0±0.2 cm-1 and ωex′e=2.3±0.2 cm-1 for the A 1∑u+ state. The lifetime of the A 1∑u+ ν=0 state of Mo2 has been measured to be 18±3 ns by time-delayed two-photon ionization. The ionization potential of Mo2 is found to be less than 6.42 eV (compared to 7.10 eV for atomic Mo) indicating a substantially stronger chemical bond in Mo2+ than in Mo2. A discussion of the electronic structure of Mo2 and the implications of these findings for bonding in other transition metal dimers is also presented. © 1983 American Institute of Physics.

References Powered by Scopus

Atomic shielding constants

1813Citations
N/AReaders
Get full text

Laser production of supersonic metal cluster beams

773Citations
N/AReaders
Get full text

Über die Struktur der zweiatomigen Molekelspektren nach der Quantenmechanik

292Citations
N/AReaders
Get full text

Cited by Powered by Scopus

C<inf>60</inf>: Buckminsterfullerene

15065Citations
N/AReaders
Get full text

The stability of the fullerenes C<inf>n</inf>, with n = 24, 28, 32, 36, 50, 60 and 70

1430Citations
N/AReaders
Get full text

Clusters of Transition-Metal Atoms

1308Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Hopkins, J. B., Langridge-Smith, P. R. R., Morse, M. D., & Smalley, R. E. (1983). Supersonic metal cluster beams of refractory metals: Spectral investigations of ultracold Mo2. The Journal of Chemical Physics, 78(4), 1627–1637. https://doi.org/10.1063/1.444961

Readers over time

‘09‘11‘12‘13‘14‘15‘16‘17‘18‘19‘20‘21‘22‘23‘24036912

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 20

61%

Researcher 8

24%

Professor / Associate Prof. 5

15%

Readers' Discipline

Tooltip

Chemistry 24

59%

Physics and Astronomy 16

39%

Materials Science 1

2%

Save time finding and organizing research with Mendeley

Sign up for free
0