Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara)

183Citations
Citations of this article
198Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Lepidosauria (lizards, snakes, tuatara) is a globally distributed and ecologically important group of over 9,000 reptile species. The earliest fossil records are currently restricted to the Late Triassic and often dated to 227 million years ago (Mya). As these early records include taxa that are relatively derived in their morphology (e.g. Brachyrhinodon), an earlier unknown history of Lepidosauria is implied. However, molecular age estimates for Lepidosauria have been problematic; dates for the most recent common ancestor of all lepidosaurs range between approximately 226 and 289 Mya whereas estimates for crown-group Squamata (lizards and snakes) vary more dramatically: 179 to 294 Mya. This uncertainty restricts inferences regarding the patterns of diversification and evolution of Lepidosauria as a whole. Results: Here we report on a rhynchocephalian fossil from the Middle Triassic of Germany (Vellberg) that represents the oldest known record of a lepidosaur from anywhere in the world. Reliably dated to 238-240 Mya, this material is about 12 million years older than previously known lepidosaur records and is older than some but not all molecular clock estimates for the origin of lepidosaurs. Using RAG1 sequence data from 76 extant taxa and the new fossil specimens two of several calibrations, we estimate that the most recent common ancestor of Lepidosauria lived at least 242 Mya (238-249.5), and crown-group Squamata originated around 193 Mya (176-213). Conclusion: A Early/Middle Triassic date for the origin of Lepidosauria disagrees with previous estimates deep within the Permian and suggests the group evolved as part of the faunal recovery after the end-Permain mass extinction as the climate became more humid. Our origin time for crown-group Squamata coincides with shifts towards warmer climates and dramatic changes in fauna and flora. Most major subclades within Squamata originated in the Cretaceous postdating major continental fragmentation. The Vellberg fossil locality is expected to become an important resource for providing a more balanced picture of the Triassic and for bridging gaps in the fossil record of several other major vertebrate groups. © 2013 Jones et al.; licensee BioMed Central Ltd.

References Powered by Scopus

MrBayes 3: Bayesian phylogenetic inference under mixed models

27339Citations
N/AReaders
Get full text

Sea view version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building

4755Citations
N/AReaders
Get full text

A geologic time scale 2004

2544Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status

349Citations
N/AReaders
Get full text

Constraints on the timescale of animal evolutionary history

232Citations
N/AReaders
Get full text

Interrogating Genomic-Scale Data for Squamata (Lizards, Snakes, and Amphisbaenians) Shows no Support for Key Traditional Morphological Relationships

215Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Jones, M. E. H., Anderson, C. L., Hipsley, C. A., Müller, J., Evans, S. E., & Schoch, R. R. (2013). Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara). BMC Evolutionary Biology, 13(1). https://doi.org/10.1186/1471-2148-13-208

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 86

63%

Researcher 25

18%

Professor / Associate Prof. 21

15%

Lecturer / Post doc 4

3%

Readers' Discipline

Tooltip

Agricultural and Biological Sciences 110

71%

Earth and Planetary Sciences 26

17%

Biochemistry, Genetics and Molecular Bi... 10

6%

Environmental Science 9

6%

Article Metrics

Tooltip
Mentions
Blog Mentions: 2
News Mentions: 11
References: 38
Social Media
Shares, Likes & Comments: 179

Save time finding and organizing research with Mendeley

Sign up for free