Magnetite - graphene hybrids have been synthesized via a chemical reaction with a magnetite particle size of ∼10 nm. The composites are superparamagnetic at room temperature and can be separated by an external magnetic field. As compared to bare magnetite particles, the hybrids show a high binding capacity for As(III) and As(V), whose presence in the drinking water in wide areas of South Asia has been a huge problem. Their high binding capacity is due to the increased adsorption sites in the M - RGO composite which occurs by reducing the aggregation of bare magnetite. Since the composites show near complete (over 99.9%) arsenic removal within 1 ppb, they are practically usable for arsenic separation from water. © 2010 American Chemical Society.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Chandra, V., Park, J., Chun, Y., Lee, J. W., Hwang, I. C., & Kim, K. S. (2010). Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano, 4(7), 3979–3986. https://doi.org/10.1021/nn1008897