Air samples collected during 1994-2000 at the Canadian Arctic air monitoring station Alert (82°30' N, 62°20' W) were analysed by enantiospecific gas chromatography-mass spectrometry for I±-hexachlorocyclohexane (α-HCH), trans-chlordane (TC) and cis-chlordane (CC). Results were expressed as enantiomer fractions (EF Combining double low line peak areas of (+)/[(+) + (and±)] enantiomers), where EFs Combining double low line 0.5, < 0.5 and > 0.5 indicate racemic composition, and preferential depletion of (+) and (-) enantiomers, respectively. Long-term average EFs were close to racemic values for and α-HCH (0.504± 0.004, n = 197) and CC (0.505± 0.004, n=162), and deviated farther from racemic for TC (0.470 ± 0.013, n = 165). Digital filtration analysis revealed annual cycles of lower α-HCH EFs in summer-fall and higher EFs in winter-spring. These cycles suggest volatilization of partially degraded α-HCH with EF < 0.5 from open water and advection to Alert during the warm season, and background transport of α-HCH with EF > 0.5 during the cold season. The contribution of sea-volatilized α-HCH was only 11% at Alert, vs. 32% at Resolute Bay (74.68° N, 94.90° W) in 1999. EFs of TC also followed annual cycles of lower and higher values in the warm and cold seasons. These were in phase with low and high cycles of the TC/CC ratio (expressed as FTC Combining double low line TC/(TC+CC)), which suggests greater contribution of microbially "weathered" TC in summer-fall versus winter-spring. CC was closer to racemic than TC and displayed seasonal cycles only in 1997-1998. EF profiles are likely to change with rising contribution of secondary emission sources, weathering of residues in the environment, and loss of ice cover in the Arctic. Enantiomer-specific analysis could provide added forensic capability to air monitoring programs.
CITATION STYLE
Bidleman, T. F., Jantunen, L. M., Hung, H., Ma, J., Stern, G. A., Rosenberg, B., & Racine, J. (2015). Annual cycles of organochlorine pesticide enantiomers in Arctic air suggest changing sources and pathways. Atmospheric Chemistry and Physics, 15(3), 1411–1420. https://doi.org/10.5194/acp-15-1411-2015
Mendeley helps you to discover research relevant for your work.