To assess the impact of rising atmospheric CO2 and eutrophication on the carbonate chemistry of the East China Sea shelf waters, saturation states (Ω) for two important biologically relevant carbonate minerals-calcite (Ωc) and aragonite (Ωa)-were calculated throughout the water column from dissolved inorganic carbon (DIC) and total alkalinity (TA) data collected in spring and summer of 2009. Results show that the highest Ωc (∼9.0) and Ωa (∼5.8) values were found in surface water of the Changjiang plume area in summer, whereas the lowest values (Ωc Combining double low line ∼2.7 and Ωa Combining double low line ∼1.7) were concurrently observed in the bottom water of the same area. This divergent behavior of saturation states in surface and bottom waters was driven by intensive biological production and strong stratification of the water column. The high rate of phytoplankton production, stimulated by the enormous nutrient discharge from the Changjiang, acts to decrease the ratio of DIC to TA, and thereby increases Ω values. In contrast, remineralization of organic matter in the bottom water acts to increase the DIC to TA ratio, and thus decreases Ω values. The projected result shows that continued increases of atmospheric CO2 under the IS92a emission scenario will decrease Ω values by 40-50% by the end of this century, but both the surface and bottom waters will remain supersaturated with respect to calcite and aragonite. Nevertheless, superimposed on such Ω decrease is the increasing eutrophication, which would mitigate or enhance the Ω decline caused by anthropogenic CO2 uptake in surface and bottom waters, respectively. Our simulation reveals that, under the combined impact of eutrophication and augmentation of atmospheric CO2, the bottom water of the Changjiang plume area will become undersaturated with respect to aragonite (Ωa Combining double low line ∼0.8) by the end of this century, which would threaten the health of the benthic ecosystem. © 2013 Author(s).
CITATION STYLE
Chou, W. C., Gong, G. C., Hung, C. C., & Wu, Y. H. (2013). Carbonate mineral saturation states in the East China Sea: Present conditions and future scenarios. Biogeosciences, 10(10), 6453–6467. https://doi.org/10.5194/bg-10-6453-2013
Mendeley helps you to discover research relevant for your work.