The preparation and characterization of a porous hybrid cryogel based on the two organic polymers, poly(vinyl alcohol) (PVA) and karaya gum (KG), into which polyphosphate (polyP) nanoparticles have been incorporated, are described. The PVA/KG cryogel is prepared by intermolecular cross-linking of PVA via freeze-thawing and Ca2+-mediated ionic gelation of KG to form stable salt bridges. The incorporation of polyP as amorphous nanoparticles with Ca2+ ions (Ca-polyP-NP) is achieved using an in situ approach. The polyP constituent does not significantly affect the viscoelastic properties of the PVA/KG cryogel that are comparable to natural soft tissue. The exposure of the Ca-polyP-NP within the cryogel to medium/serum allows the formation of a biologically active polyP coacervate/protein matrix that stimulates the growth of human mesenchymal stem cells in vitro and provides the cells a suitable matrix for infiltration superior to the polyP-free cryogel. In vivo biocompatibility studies in rats reveal that already two to four weeks after implantation into muscle, the implant regions containing the polyP-KG/PVA material become replaced by initial granulation tissue, whereas the controls are free of any cells. It is proposed that the polyP-KG/PVA cryogel has the potential to become a promising implant material for soft tissue engineering/repair.
CITATION STYLE
Tolba, E., Wang, X., Ackermann, M., Neufurth, M., Muñoz-Espí, R., Schröder, H. C., & Müller, W. E. G. (2019). In Situ Polyphosphate Nanoparticle Formation in Hybrid Poly(vinyl alcohol)/Karaya Gum Hydrogels: A Porous Scaffold Inducing Infiltration of Mesenchymal Stem Cells. Advanced Science, 6(2). https://doi.org/10.1002/advs.201801452
Mendeley helps you to discover research relevant for your work.