Abstract. The role of chlorine atoms (Cl) in atmospheric oxidation was traditionally thought to be limited to the marine boundary layer, where they are produced through heterogeneous reactions involving sea salt. However, recent observation of photolytic Cl precursors (ClNO2 and Cl2) formed from anthropogenic pollution has expanded the potential importance of Cl to include coastal and continental urban areas. Measurements of ClNO2 in Los Angeles during CalNex showed it to be an important primary (first generation) radical source. Ratios of volatile organic compounds (VOCs) have been proposed as a sensitive method to quantify Cl oxidation, but have shown little evidence for a significant role of Cl outside of the Arctic. We used a box model with the Master Chemical Mechanism (MCM v3.2) chemistry scheme, constrained by observations in Los Angeles, to examine the Cl-sensitivity of the most commonly used VOC ratios (i-butane, n-butane, and propane) as a function of NOx and secondary radical production. Model results indicated these and faster reacting VOC tracer ratios could not detect the influence of Cl unless the sustained ratio of OH to Cl was below 200. However, the model results also show that secondary (second generation) OH production resulting from Cl oxidation of VOCs is strongly influenced by NOx, and that this effect can obscure the importance of Cl as a primary oxidant. Calculated concentrations of Cl showed a maximum in mid-morning due to a photolytic source from ClNO2 and loss primarily to reactions with VOCs. The OH to Cl ratio was below 200 for approximately three hours in the morning, but Cl oxidation was not evident from the measured ratios of VOCs. Instead, model simulations show that secondary OH production causes VOC ratios to follow the values expected for OH oxidation despite the significant input of primary Cl from ClNO2 photolysis in the morning. Despite the prevalence of secondary OH as an oxidant in Los Angeles, Cl may play an important role in tropospheric chemistry. The reactivity of Cl in Los Angeles during CalNex was more than an order of magnitude larger than that of OH. In addition, because of its reactivity toward different classes of VOCs and its greater propensity to participate in chain propagation rather than sink reactions, Cl atoms have a different impact on regional atmospheric oxidation than do OH radicals.
CITATION STYLE
Young, C. J., Washenfelder, R. A., Edwards, P. M., Parrish, D. D., Gilman, J. B., Kuster, W. C., … Brown, S. S. (2013). Evaluating evidence for Cl sources and oxidation chemistry in a coastal, urban environment. Atmospheric Chemistry and Physics Discussions, 13(5), 13685–13720. Retrieved from http://www.atmos-chem-phys-discuss.net/13/13685/2013/
Mendeley helps you to discover research relevant for your work.