First year of upper tropospheric integrated content of CO2 from IASI hyperspectral infrared observations

144Citations
Citations of this article
69Readers
Mendeley users who have this article in their library.

Abstract

Simultaneous observations from the Infrared Atmospheric Sounding Interferometer (IASI) and from the Advanced Microwave Sounding Unit (AMSU), launched together onboard the European MetOp platform in October 2006, are used to retrieve an upper tropospheric content of carbon dioxide (CO2) covering the range 11-15 km (100-300 hPa), in clear-sky conditions, in the tropics, over sea, for the first year of operation of MetOp (January 2008-2008). With its very high spectral resolution, IASI provides fourteen channels in the 15 Î1/4m band highly sensitive to CO2 with reduced sensitivities to other atmospheric variables. IASI observations, sensitive to both CO2 and temperature, are used in conjunction with AMSU observations, only sensitive to temperature, to decorrelate both signals through a non-linear inference scheme based on neural networks. A key point of this approach is that no use is made of prior information in terms of CO2 seasonality, trend, or geographical patterns. The precision of the retrieval is estimated to be about 2.0 ppmv (∼0.5%) for a 5°×5° spatial resolution on a monthly time scale. Features of the retrieved CO2 space-time distribution include: (1) a strong seasonal cycle of 4 ppmv in the northern tropics with a maximum in Juneĝ€"July and a minimum in September-October. This cycle is characterized by a backward two-months lag as compared to the surface, by a backward one-month lag as compared to measurements performed at 11 km, and by a forward one-month lag as compared to observations performed at the tropopause (16 km). This is likely due to the time-lag of CO2 cycle while transported from the surface to the upper troposphere; (2) a more complex seasonal cycle in the southern tropics, in agreement with in-situ measurements; (3) a latitudinal variation of CO 2 shifting from a South-to-North increase of 3.5 ppmv in boreal spring to a South-to-North decrease of 1.5 ppmv in the fall, in excellent agreement with tropospheric aircraft measurements; (4) signatures of CO 2 emissions transported to the upper troposphere. In addition to bringing an improved view of CO2 distribution, these results from IASI should provide an additional means to observe and understand atmospheric transport pathways of CO2 from the surface to the upper troposphere. © 2009 Author(s).

References Powered by Scopus

Observational constraints on the global atmospheric CO<inf>2</inf> budget

1685Citations
N/AReaders
Get full text

Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO<inf>2</inf>

608Citations
N/AReaders
Get full text

Interannual and seasonal variability of biomass burning emissions constrained by satellite observations

574Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder

607Citations
N/AReaders
Get full text

The ACOS CO<inf>2</inf> retrieval algorithm-Part 1: Description and validation against synthetic observations

455Citations
N/AReaders
Get full text

Hyperspectral earth observation from IASI

370Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Crevoisier, C., Chedin, A., Matsueda, H., MacHida, T., Armante, R., & Scott, N. A. (2009). First year of upper tropospheric integrated content of CO2 from IASI hyperspectral infrared observations. Atmospheric Chemistry and Physics, 9(14), 4797–4810. https://doi.org/10.5194/acp-9-4797-2009

Readers' Seniority

Tooltip

Researcher 23

48%

PhD / Post grad / Masters / Doc 18

38%

Professor / Associate Prof. 4

8%

Lecturer / Post doc 3

6%

Readers' Discipline

Tooltip

Earth and Planetary Sciences 32

71%

Environmental Science 9

20%

Mathematics 3

7%

Computer Science 1

2%

Save time finding and organizing research with Mendeley

Sign up for free