Gap junctions and inhibitory synapses modulate inspiratory motoneuron synchronization

N/ACitations
Citations of this article
48Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Interneuronal electrical coupling via gap junctions and chemical synaptic inhibitory transmission are known to have roles in the generation and synchronization of activity in neuronal networks. Uncertainty exists regarding the roles of these two modes of interneuronal communication in the central respiratory rhythm-generating system. To assess their roles, we performed studies on both the neonatal mouse medullary slice and en bloc brain stem-spinal cord preparations where rhythmic inspiratory motor activity can readily be recorded from both hypoglossal and phrenic nerve roots. The rhythmic inspiratory activity observed had two temporal characteristics: the basic respiratory frequency occurring on a long time scale and the synchronous neuronal discharge within the inspiratory burst occurring on a short time scale. In both preparations, we observed that bath application of gap-junction blockers, including 18α-glycyrrhetinic acid, 18β-glycyrrhetinic acid, and carbenoxolone, all caused a reduction in respiratory frequency. In contrast, peak integrated phrenic and hypoglossal inspiratory activity was not significantly changed by gap-junction blockade. On a short-time-scale, gap-junction blockade increased the degree of synchronization within an inspiratory burst observed in both nerves. In contrast, opposite results were observed with blockade of GABAA and glycine receptors. We found that respiratory frequency increased with receptor blockade, and simultaneous blockade of both receptors consistently resulted in a reduction in short-time-scale synchronized activity observed in phrenic and hypoglossal inspiratory bursts. These results support the concept that the central respiratory system has two components: a rhythm generator responsible for the production of respiratory cycle timing and an inspiratory pattern generator that is involved in short-time-scale synchronization. In the neonatal rodent, properties of both components can be regulated by interneuronal communication via gap junctions and inhibitory synaptic transmission.

Cite

CITATION STYLE

APA

Bou-Flores, C., & Berger, A. J. (2001). Gap junctions and inhibitory synapses modulate inspiratory motoneuron synchronization. Journal of Neurophysiology, 85(4), 1543–1551. https://doi.org/10.1152/jn.2001.85.4.1543

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free