Global distributions of overlapping gravity waves in HIRDLS data

17Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Abstract

Data from the High Resolution Dynamics Limb Sounder (HIRDLS) instrument on NASA's Aura satellite are used to investigate the relative numerical variability of observed gravity wave packets as a function of both horizontal and vertical wavenumber, with support from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on TIMED. We see that these distributions are dominated by large vertical and small horizontal wavenumbers, and have a similar spectral form at all heights and latitudes, albeit with important differences. By dividing our observed wavenumber distribution into particular subspecies of waves, we demonstrate that these distributions exhibit significant temporal and spatial variability, and that small-scale variability associated with particular geophysical phenomena such as the monsoon arises due to variations in specific parts of the observed spectrum. We further show that the well-known Andes/Antarctic Peninsula gravity wave hotspot during southern winter, home to some of the largest wave fluxes on the planet, is made up of relatively few waves, but with a significantly increased flux per wave due to their spectral characteristics. These results have implications for the modelling of gravity wave phenomena.

Cite

CITATION STYLE

APA

Wright, C. J., Osprey, S. M., & Gille, J. C. (2015). Global distributions of overlapping gravity waves in HIRDLS data. Atmospheric Chemistry and Physics, 15(14), 8459–8477. https://doi.org/10.5194/acp-15-8459-2015

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free