Growth of a young pingo in the Canadian Arctic observed by RADARSAT-2 interferometric satellite radar

23Citations
Citations of this article
57Readers
Mendeley users who have this article in their library.

Abstract

Advancements in radar technology are increasing our ability to detect Earth surface deformation in permafrost environments. In this paper we use satellite Differential Interferometric Synthetic Aperture Radar (DInSAR) to describe the growth of a large, relatively young pingo in the Tuktoyaktuk Coastlands. High-resolution RADARSAT-2 imagery (2011-2014) analyzed with the Multidimensional Small Baseline Subset (MSBAS) DInSAR revealed a maximum 2.7 cm yr-1 of domed uplift located in a drained lake basin. Satellite measurements suggest that this feature is one of the largest diameter pingos in the region that is presently growing. Observed changes in elevation were modeled as a 348 times; 290 m uniformly loaded elliptical plate with clamped edge. Analysis of historical aerial photographs suggested that ground uplift at this location initiated sometime between 1935 and 1951 following drainage of the residual pond. Uplift is largely due to the growth of intrusive ice, because the 9 % expansion of pore water associated with permafrost aggradation into saturated sands is not sufficient to explain the observed short- and long-term deformation rates. The modeled thickness of ice-rich permafrost using the Northern Ecosystem Soil Temperature (NEST) was consistent with the maximum height of this feature. Modeled permafrost aggradation from 1972 to 2014 approximated elevation changes estimated from aerial photographs for that time period. Taken together, these lines of evidence indicate that uplift is at least in part a result of freezing of the sub-pingo water lens. Seasonal variations in the uplift rate seen in the DInSAR data closely match the modeled seasonal pattern in the deepening rate of freezing front. This study demonstrates that interferometric satellite radar can detect and contribute to understanding the dynamics of terrain uplift in response to permafrost aggradation and ground ice development in remote polar environments. The present-day growth rate is smaller than predicted by the modeling and no clear growth is observed at other smaller pingos in contrast with field studies performed mainly before the 1990s. Investigation of this apparent discrepancy provides an opportunity to further develop observation methods and models.

References Powered by Scopus

Radar interferogram filtering for geophysical applications

1892Citations
N/AReaders
Get full text

A novel phase unwrapping method based on network programming

1320Citations
N/AReaders
Get full text

InSAR measurements of surface deformation over permafrost on the North Slope of Alaska

229Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Permafrost terrain dynamics and infrastructure impacts revealed by UAV photogrammetry and thermal imaging

101Citations
N/AReaders
Get full text

Multidimensional Small Baseline Subset (MSBAS) for Two-Dimensional Deformation Analysis: Case Study Mexico City

85Citations
N/AReaders
Get full text

Three-dimensional deformation time series of glacier motion from multiple-aperture DInSAR observation

42Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Samsonov, S. V., Lantz, T. C., Kokelj, S. V., & Zhang, Y. (2016). Growth of a young pingo in the Canadian Arctic observed by RADARSAT-2 interferometric satellite radar. Cryosphere, 10(2), 799–810. https://doi.org/10.5194/tc-10-799-2016

Readers over time

‘15‘16‘17‘18‘19‘20‘21‘22‘23‘240481216

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 27

75%

Researcher 8

22%

Professor / Associate Prof. 1

3%

Readers' Discipline

Tooltip

Earth and Planetary Sciences 26

65%

Environmental Science 6

15%

Agricultural and Biological Sciences 5

13%

Engineering 3

8%

Save time finding and organizing research with Mendeley

Sign up for free
0