Hydrostatic grounding line parameterization in ice sheet models

89Citations
Citations of this article
64Readers
Mendeley users who have this article in their library.

Abstract

Modeling of grounding line migration is essential to accurately simulate the behavior of marine ice sheets and investigate their stability. Here, we assess the sensitivity of numerical models to the parameterization of the grounding line position. We run the MISMIP3D benchmark experiments using the Ice Sheet System Model (ISSM) and a two-dimensional shelfy-stream approximation (SSA) model with different mesh resolutions and different sub-element parameterizations of grounding line position. Results show that different grounding line parameterizations lead to different steady state grounding line positions as well as different retreat/advance rates. Our simulations explain why some vertically depth-averaged model simulations deviate significantly from the vast majority of simulations based on SSA in the MISMIP3D benchmark. The results reveal that differences between simulations performed with and without sub-element parameterization are as large as those performed with different approximations of the stress balance equations in this configuration. They also demonstrate that the reversibility test is passed at relatively coarse resolution while much finer resolutions are needed to accurately capture the steady-state grounding line position. We conclude that fixed grid SSA models that do not employ such a parameterization should be avoided, as they do not provide accurate estimates of grounding line dynamics, even at high spatial resolution. For models that include sub-element grounding line parameterization, in the MISMIP3D configuration, a mesh resolution finer than 2 km should be employed.

References Powered by Scopus

Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise

917Citations
N/AReaders
Get full text

Ice sheet grounding line dynamics: Steady states, stability, and hysteresis

895Citations
N/AReaders
Get full text

Satellite radar interferometry for monitoring ice sheet motion: Application to an Antarctic ice stream

633Citations
N/AReaders
Get full text

Cited by Powered by Scopus

The future sea-level contribution of the Greenland ice sheet: A multi-model ensemble study of ISMIP6

194Citations
N/AReaders
Get full text

Continued retreat of Thwaites Glacier, West Antarctica, controlled by bed topography and ocean circulation

174Citations
N/AReaders
Get full text

Instantaneous Antarctic ice sheet mass loss driven by thinning ice shelves

146Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Seroussi, H., Morlighem, M., Larour, E., Rignot, E., & Khazendar, A. (2014). Hydrostatic grounding line parameterization in ice sheet models. Cryosphere, 8(6), 2075–2087. https://doi.org/10.5194/tc-8-2075-2014

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 20

45%

Researcher 19

43%

Professor / Associate Prof. 5

11%

Readers' Discipline

Tooltip

Earth and Planetary Sciences 34

77%

Environmental Science 5

11%

Mathematics 3

7%

Chemistry 2

5%

Save time finding and organizing research with Mendeley

Sign up for free