Impacts of new particle formation on aerosol Cloud Condensation Nuclei (CCN) activity in Shanghai: Case study

36Citations
Citations of this article
50Readers
Mendeley users who have this article in their library.

Abstract

New particle formation (NPF) events and their impacts on cloud condensation nuclei (CCN) were investigated using continuous measurements collected in urban Shanghai from 1 to 30 April 2012. During the campaign, NPF occurred in 8 out of the 30 days and enhanced CCN number concentration (NCCN) by a factor of 1.2-1.8, depending on supersaturation (SS). The NPF event on 3 April 2012 was chosen as an example to investigate the NPF influence on CCN activity. In this NPF event, secondary aerosols were produced continuously and increased PM2.5 mass concentration at a rate of 4.33 μg cm-3 h-1, and the growth rate (GR) and formation rate (FR) were on average 5 nm h-1 and 0.36 cm-3 s-1, respectively. The newly formed particles grew quickly from nucleation mode (10-20 nm) into CCN size range. NCCN increased rapidly at SS of 0.4-1.0% but weakly at SS of 0.2%. Correspondingly, aerosol CCN activities (fractions of activated aerosol particles in total aerosols, NCCN/NCN) were significantly enhanced from 0.24-0.60 to 0.30-0.91 at SS of 0.2-1.0% due to the NPF. On the basis of the κ-Köhler theory, aerosol size distributions and chemical composition measured simultaneously were used to predict NCCN. There was a good agreement between the predicted and measured NCCN (R2 = 0.96, Npredicted/Nmeasured = 1.04). This study reveals that NPF exerts large impacts on aerosol particle abundance and size spectra; thus, it significantly promotes NCCN and aerosol CCN activity in this urban environment. The GR of NPF is the key factor controlling the newly formed particles to become CCN at all SS levels, whereas the FR is an effective factor only under high SS (e.g., 1.0%) conditions.

References Powered by Scopus

Atmosphere: Aerosols, climate, and the hydrological cycle

3235Citations
N/AReaders
Get full text

Global indirect aerosol effects: A review

2018Citations
N/AReaders
Get full text

A single parameter representation of hygroscopic growth and cloud condensation nucleus activity

1810Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Atmospheric new particle formation and growth: Review of field observations

369Citations
N/AReaders
Get full text

Real-time chemical characterization of atmospheric particulate matter in China: A review

211Citations
N/AReaders
Get full text

Atmospheric new particle formation in China

127Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Leng, C., Zhang, Q., Tao, J., Zhang, H., Zhang, D., Xu, C., … Chen, C. (2014). Impacts of new particle formation on aerosol Cloud Condensation Nuclei (CCN) activity in Shanghai: Case study. Atmospheric Chemistry and Physics, 14(20), 11353–11365. https://doi.org/10.5194/acp-14-11353-2014

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 24

69%

Researcher 6

17%

Professor / Associate Prof. 5

14%

Readers' Discipline

Tooltip

Earth and Planetary Sciences 11

35%

Environmental Science 10

32%

Chemistry 8

26%

Engineering 2

6%

Save time finding and organizing research with Mendeley

Sign up for free