Mineralogical properties and internal structures of individual fine particles of Saharan dust

31Citations
Citations of this article
44Readers
Mendeley users who have this article in their library.

Abstract

Mineral dust interacts with incoming/outgoing radiation, gases, other aerosols, and clouds. The assessment of its optical and chemical impacts requires knowledge of the physical and chemical properties of bulk dust and single particles. Despite the existence of a large body of data from field measurements and laboratory analyses, the internal properties of single dust particles have not been defined precisely. Here, we report on the mineralogical organization and internal structures of individual fine ( <5 μm) Saharan dust particles sampled at Tenerife, Canary Islands. The bulk of Tenerife dust was composed of clay minerals (81 %), followed by quartz (10 %), plagioclase (3 %), and K-feldspar (2 %). Cross-sectional slices of Saharan dust particles prepared by the focused ion beam technique were analyzed by transmission electron microscopy (TEM) to probe the particle interiors. TEM analysis showed that the most common particle type was clay-rich agglomerate, dominated by illite-smectite series clay minerals with subordinate kaolinite. Submicron grains of iron (hydr)oxides (goethite and hematite) were commonly dispersed through the clay-rich particles. The median total volume of the iron (hydr)oxide grains included in the dust particles was estimated to be about 1.5%vol. The average iron content of clay minerals, assuming 14 wt% H2O, was determined to be 5.0 wt %. Coarse mineral cores, several micrometers in size, were coated with thin layers of clay-rich agglomerate. Overall, the dust particles were roughly ellipsoidal, with an average axial ratio of 1.4 : 1.0 : 0.5. The mineralogical and structural properties of single Saharan dust particles provide a basis for the modeling of dust radiative properties. Major iron-bearing minerals, such as illite-smectite series clay minerals and iron (hydr)oxides, were commonly submicron- to nano-sized, possibly enhancing their biogeochemical availability to remote marine ecosystems lacking micronutrients.

References Powered by Scopus

Noaa's hysplit atmospheric transport and dispersion modeling system

4601Citations
N/AReaders
Get full text

Global iron connections between desert dust, ocean biogeochemistry, and climate

2327Citations
N/AReaders
Get full text

A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization

1348Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Climate Models and Remote Sensing Retrievals Neglect Substantial Desert Dust Asphericity

52Citations
N/AReaders
Get full text

Mineralogy and physicochemical features of Saharan dust wet deposited in the Iberian Peninsula during an extreme red rain event

52Citations
N/AReaders
Get full text

Aircraft and ground measurements of dust aerosols over the west African coast in summer 2015 during ICE-D and AER-D

36Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Jeong, G. Y., Park, M. Y., Kandler, K., Nousiainen, T., & Kemppinen, O. (2016). Mineralogical properties and internal structures of individual fine particles of Saharan dust. Atmospheric Chemistry and Physics, 16(19), 12397–12410. https://doi.org/10.5194/acp-16-12397-2016

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 17

59%

Researcher 6

21%

Professor / Associate Prof. 3

10%

Lecturer / Post doc 3

10%

Readers' Discipline

Tooltip

Earth and Planetary Sciences 10

50%

Environmental Science 8

40%

Chemical Engineering 1

5%

Chemistry 1

5%

Save time finding and organizing research with Mendeley

Sign up for free