An Al-cytosine association complex has been generated via laser ablation of a mixture of aluminum and cytosine powders that were pressed into a rod form. The ionization energy of the complex is found to be 5.16 ± 0.01 eV. The photoionization efficiency spectrum of Al-cytosine has also been collected. DFT calculations indicate that binding of Al to cytosine manifests a significant weakening of the N-H bond, predicted to have a strength of 1.5 eV in the complex, and a significant stabilization of the oxo tautomeric form relative to the hydroxy forms. The predicted ionization energy of 5.2 eV agrees well with the experimental value. The threshold for dehydrogenation/ionization of Al-cytosine, forming (Al-cytosine-H)+, is found to occur at photoexcitation energies between 11.4 and 12.8 eV. This is a two-photon process that is proposed to occur via photoinduced electron transfer from Al to an antibonding (σ*) orbital localized on N-H. In the context of this mechanism, this work constitutes the first time charge transfer between a metal and DNA base has been photoinitiated in the gas phase.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Pedersen, D. B., Zgierski, M. Z., Denommee, S., & Simard, B. (2002). Photoinduced charge-transfer dehydrogenation in a gas-phase metal-DNA base complex: Al-cytosine. Journal of the American Chemical Society, 124(23), 6686–6692. https://doi.org/10.1021/ja0122501