Prediction of gas/particle partitioning of polybrominated diphenyl ethers (PBDEs) in global air: A theoretical study

101Citations
Citations of this article
44Readers
Mendeley users who have this article in their library.

Abstract

Gas/particle (G/P) partitioning of semi-volatile organic compounds (SVOCs) is an important process that primarily governs their atmospheric fate, long-range atmospheric transport, and their routes of entering the human body. All previous studies on this issue are hypothetically based on equilibrium conditions, the results of which do not predict results from monitoring studies well in most cases. In this study, a steady-state model instead of an equilibrium-state model for the investigation of the G/P partitioning behavior of polybrominated diphenyl ethers (PBDEs) was established, and an equation for calculating the partition coefficients under steady state (KPS) of PBDEs (log KPS = log KPE + logα) was developed in which an equilibrium term (log KPE = log KOA + logfOM -11.91 where fOM is organic matter content of the particles) and a non-equilibrium term (log α, caused by dry and wet depositions of particles), both being functions of log KOA (octanol-air partition coefficient), are included. It was found that the equilibrium is a special case of steady state when the non-equilibrium term equals zero. A criterion to classify the equilibrium and non-equilibrium status of PBDEs was also established using two threshold values of log KOA, log KOA1, and log KOA2, which divide the range of log KOA into three domains: equilibrium, non-equilibrium, and maximum partition domain. Accordingly, two threshold values of temperature t, tTH1 when log KOA = log KOA1 and tTH2 when log KOA = log KOA2, were identified, which divide the range of temperature also into the same three domains for each PBDE congener. We predicted the existence of the maximum partition domain (the values of log KPS reach a maximum constant of -1.53) that every PBDE congener can reach when log KOA ≥ log KOA2, or t ≤ tTH2. The novel equation developed in this study was applied to predict the G/P partition coefficients of PBDEs for our Chinese persistent organic pollutants (POPs) Soil and Air Monitoring Program, Phase 2 (China-SAMP-II) program and other monitoring programs worldwide, including in Asia, Europe, North America, and the Arctic, and the results matched well with all the monitoring data, except those obtained at e-waste sites due to the unpredictable PBDE emissions at these sites. This study provided evidence that the newly developed steady-state-based equation is superior to the equilibrium-state-based equation that has been used in describing the G/P partitioning behavior over decades. We suggest that the investigation on G/P partitioning behavior for PBDEs should be based onsteady-state, not equilibrium state, and equilibrium is just a special case of steady-state when non-equilibrium factors can be ignored. We also believe that our new equation provides a useful tool for environmental scientists in both monitoring and modeling research on G/P partitioning of PBDEs and can be extended to predict G/P partitioning behavior for other SVOCs as well.

References Powered by Scopus

Atmospheric processes

889Citations
N/AReaders
Get full text

Semivolatile organic compounds in indoor environments

729Citations
N/AReaders
Get full text

Review and comparative analysis of the theories on partitioning between the gas and aerosol particulate phases in the atmosphere

680Citations
N/AReaders
Get full text

Cited by Powered by Scopus

The occurrence of polybrominated diphenyl ether (PBDE) contamination in soil, water/sediment, and air

84Citations
N/AReaders
Get full text

Three-year monitoring of atmospheric PCBs and PBDEs at the Chinese Great Wall Station, West Antarctica: Levels, chiral signature, environmental behaviors and source implication

73Citations
N/AReaders
Get full text

Decabrominated diphenyl ethers (BDE-209) in Chinese and global air: Levels, gas/particle partitioning, and long-range transport: Is long-range transport of BDE-209 really governed by the movement of particles?

73Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Li, Y. F., Ma, W. L., & Yang, M. (2015). Prediction of gas/particle partitioning of polybrominated diphenyl ethers (PBDEs) in global air: A theoretical study. Atmospheric Chemistry and Physics, 15(4), 1669–1681. https://doi.org/10.5194/acp-15-1669-2015

Readers over time

‘15‘16‘17‘18‘19‘20‘21‘22‘23‘2502468

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 18

62%

Researcher 8

28%

Professor / Associate Prof. 3

10%

Readers' Discipline

Tooltip

Environmental Science 21

72%

Chemistry 3

10%

Engineering 3

10%

Agricultural and Biological Sciences 2

7%

Save time finding and organizing research with Mendeley

Sign up for free
0