Technical Note: Remote sensing of sea surface salinity using the propagation of low-frequency navigation signals

2Citations
Citations of this article
4Readers
Mendeley users who have this article in their library.

Abstract

This paper introduces a potential method for the remote sensing of sea surface salinity (SSS) using the measured propagation delay of low-frequency Loran-C signals transmitted over an all-seawater path between the Sylt station in Germany and an integrated Loran-C/GPS receiver located in Harwich, UK. The overall delay variations in Loran-C surface waves along the path may be explained by changes in sea surface properties (especially the temperature and salinity), as well as atmospheric properties that determine the refractive index of the atmosphere. After removing the atmospheric and sea surface temperature (SST) effects from the measured delay, the residual delay revealed a temporal variation similar to that of SSS data obtained by the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) satellite.

Cite

CITATION STYLE

APA

Astin, I., & Feng, Y. (2015). Technical Note: Remote sensing of sea surface salinity using the propagation of low-frequency navigation signals. Ocean Science, 11(5), 695–698. https://doi.org/10.5194/os-11-695-2015

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free