Tea fields emit large amounts of nitrous oxide (N 2 O) to the atmosphere. Obtaining accurate estimations of N 2 O emissions from tea-planted soils is challenging due to strong spatial variability. We examined the spatial variability in N 2 O emissions from a red-soil tea field in Hunan Province, China, on 22 April 2012 (in a wet season) using 147 static mini chambers approximately regular gridded in a 4.0 ha tea field. The N 2 O fluxes for a 30 min snapshot (10:00-10:30 a.m.) ranged from -1.73 to 1659.11 g N ha -1 d -1 and were positively skewed with an average flux of 102.24 g N ha -1 d -1. The N 2 O flux data were transformed to a normal distribution by using a logit function. The geostatistical analyses of our data indicated that the logit-transformed N 2 O fluxes (FLUX30t) exhibited strong spatial autocorrelation, which was characterized by an exponential semivariogram model with an effective range of 25.2 m. As observed in the wet season, the logit-transformed soil ammonium-N (NH4Nt), soil nitrate-N (NO3Nt), soil organic carbon (SOCt) and total soil nitrogen (TSNt) were all found to be significantly correlated with FLUX30t (r = 0.57-0.71, p < 0.001). Three spatial interpolation methods (ordinary kriging, regression kriging and cokriging) were applied to estimate the spatial distribution of N 2 O emissions over the study area. Cokriging with NH4Nt and NO3Nt as covariables (r = 0.74 and RMSE = 1.18) outperformed ordinary kriging (r = 0.18 and RMSE = 1.74), regression kriging with the sample position as a predictor (r = 0.49 and RMSE = 1.55) and cokriging with SOCt as a covariable (r = 0.58 and RMSE = 1.44). The predictions of the three kriging interpolation methods for the total N 2 O emissions of 4.0 ha tea field ranged from 148.2 to 208.1 g N d -1, based on the 30 min snapshots obtained during the wet season. Our findings suggested that to accurately estimate the total N 2 O emissions over a region, the environmental variables (e.g., soil properties) and the current land use pattern (e.g., tea row transects in the present study) must be included in spatial interpolation. Additionally, compared with other kriging approaches, the cokriging prediction approach showed great advantages in being easily deployed and, more importantly, providing accurate regional estimation of N 2 O emissions from tea-planted soils.
CITATION STYLE
Fu, X., Liu, X., Li, Y., Shen, J., Wang, Y., Zou, G., … Wu, J. (2015). Wet-season spatial variability in N2O emissions from a tea field in subtropical central China. Biogeosciences, 12(12), 3899–3911. https://doi.org/10.5194/bg-12-3899-2015
Mendeley helps you to discover research relevant for your work.