Resistance to Cybersecurity Attacks in a Novel Network for Autonomous Vehicles

3Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

The increased interest in autonomous vehicles has led to the development of novel networking protocols in VANETs In such a widespread safety-critical application, security is paramount to the implementation of the networks. We view new autonomous vehicle edge networks as opportunistic networks that bridge the gap between fully distributed vehicular networks based on short-range vehicle-to-vehicle communication and cellular-based infrastructure for centralized solutions. Experiments are conducted using opportunistic networking protocols to provide data to autonomous trams and buses in a smart city. Attacking vehicles enter the city aiming to disrupt the network to cause harm to the general public. In the experiments the number of vehicles and the attack length is altered to investigate the impact on the network and vehicles. Considering different measures of success as well as computation expense, measurements are taken from all nodes in the network across different lengths of attack. The data gathered from each node allow exploration into how different attacks impact metrics including the delivery probability of a message, the time taken to deliver and the computation expense to each node. The novel multidimensional analysis including geospatial elements provides evidence that the state-of-the-art MaxProp algorithm outperforms the benchmark as well as other, more complex routing protocols in most of the categories. Upon the introduction of attacking nodes however, PRoPHET provides the most reliable delivery probability when under attack. Two different attack methods (black and grey holes) are used to disrupt the flow of messages throughout the network and the more basic protocols show that they are less consistent. In some metrics, the PRoPHET algorithm performs better when under attack due to the benefit of reduced network traffic.

Author supplied keywords

References Powered by Scopus

The ONE simulator for DTN protocol evaluation

2134Citations
N/AReaders
Get full text

A Delay-Tolerant Network Architecture for Challenged Internets

1981Citations
N/AReaders
Get full text

MaxProp: Routing for vehicle-based disruption-tolerant networks

1701Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Autonomous Vehicles: Sophisticated Attacks, Safety Issues, Challenges, Open Topics, Blockchain, and Future Directions

72Citations
N/AReaders
Get full text

Application of Attack Graphs to Simulate the Violation of the Movement of Vehicles in the Convoy

1Citations
N/AReaders
Get full text

An Integrated Approach To Mitigating Systemic Cyber Risk In Autonomous Electric Vehicles

0Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Brocklehurst, C., & Radenkovic, M. (2022). Resistance to Cybersecurity Attacks in a Novel Network for Autonomous Vehicles. Journal of Sensor and Actuator Networks, 11(3). https://doi.org/10.3390/jsan11030035

Readers over time

‘22‘23‘240481216

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 6

67%

Professor / Associate Prof. 1

11%

Lecturer / Post doc 1

11%

Researcher 1

11%

Readers' Discipline

Tooltip

Computer Science 8

73%

Engineering 2

18%

Design 1

9%

Save time finding and organizing research with Mendeley

Sign up for free
0