Late Quaternary variations in relative sea level due to glacial cycle polar wander

26Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Growth and decay of continental ice sheets can excite significant motion of the Earth's rotation pole and cause a complex spatio-temporal pattern of changes in relative sea level. These two effects have generally been considered separately, but may interact in important ways. In particular, a simple model of the melting of the Laurentide ice sheet causes a uniform eustatic sea level rise of 55 m, and also induces a motion of the rotation pole by 0.1 to 1 degree, depending on viscosity structure in the mantle. This motion produces a secular pole tide, which is a spherical harmonic degree 2, order 1 component of the relative sea level pattern, with peak-to-peak amplitude of 20 to 40 m. The maximum effect is along the great circle passing through the path of the pole and at latitudes of ±45°. This secular pole tide has been ignored in most previous attempts to estimate ice sheet loading history and mantle viscosity from global patterns of relative sea level change. It has a large influence along the East coast of North America and the West coast of South America, and significantly contributes to present day rates of relative sea level change.

Cite

CITATION STYLE

APA

Bills, B. G., & James, T. S. (1996). Late Quaternary variations in relative sea level due to glacial cycle polar wander. Geophysical Research Letters, 23(21), 3023–3026. https://doi.org/10.1029/96GL02886

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free