An accumulator model for spontaneous neural activity prior to self-initiated movement

332Citations
Citations of this article
692Readers
Mendeley users who have this article in their library.

Abstract

A gradual buildup of neuronal activity known as the "readiness potential" reliably precedes voluntary self-initiated movements, in the average timelocked tomovement onset. This buildup is presumed to reflect the final stages of planning and preparation for movement. Here we present a different interpretation of the premovement buildup.We used a leaky stochastic accumulator tomodel the neural decision of "when" to move in a task where there is no specific temporal cue, but only a general imperative to produce amovement after an unspecified delay on the order of several seconds. According to our model, when the imperative to produce a movement is weak, the precise moment at which the decision threshold is crossed leading tomovement is largely determined by spontaneous subthreshold fluctuations in neuronal activity. Time locking to movement onset ensures that these fluctuations appear in the average as a gradual exponential-looking increase in neuronal activity. Our model accounts for the behavioral and electroencephalography data recorded from human subjects performing the task and also makes a specific prediction that we confirmed in a second electroencephalography experiment: Fast responses to temporally unpredictable interruptions should be preceded by a slow negative-going voltage deflection beginning well before the interruption itself, even when the subject was not preparing to move at that particular moment.

References Powered by Scopus

A theory of memory retrieval

3412Citations
N/AReaders
Get full text

Removing electroencephalographic artifacts by blind source separation

2733Citations
N/AReaders
Get full text

The neural basis of decision making

2566Citations
N/AReaders
Get full text

Cited by Powered by Scopus

The science of mind wandering: Empirically navigating the stream of consciousness

1192Citations
N/AReaders
Get full text

Neuronal reward and decision signals: From theories to data

720Citations
N/AReaders
Get full text

Sense of agency in the human brain

656Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Schurger, A., Sitt, J. D., & Dehaene, S. (2012). An accumulator model for spontaneous neural activity prior to self-initiated movement. Proceedings of the National Academy of Sciences of the United States of America, 109(42). https://doi.org/10.1073/pnas.1210467109

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 282

58%

Researcher 142

29%

Professor / Associate Prof. 49

10%

Lecturer / Post doc 15

3%

Readers' Discipline

Tooltip

Psychology 199

45%

Neuroscience 127

29%

Agricultural and Biological Sciences 72

16%

Medicine and Dentistry 42

10%

Article Metrics

Tooltip
Mentions
Blog Mentions: 3
News Mentions: 14
References: 9
Social Media
Shares, Likes & Comments: 159

Save time finding and organizing research with Mendeley

Sign up for free