NON-ASSOCIATED PLASTICITY FOR SOILS, CONCRETE AND ROCK.

848Citations
Citations of this article
470Readers
Mendeley users who have this article in their library.
Get full text

Abstract

With reference to practical engineering problems it is shown that considerable differences may be encountered between the results from associated and those from non-associated plasticity theories. Next, the need for a non-associated plasticity theory is demonstrated by considering test results for sand, concrete and rock. Elementary material parameters are discussed such as Young's modulus and Poisson's ratio for the description of the elastic properties; and a cohesion and a friction angle for the determination of the strength. The salient difference from associated plasticity theory concerns the introduction of a dilatancy angle which controls the inelastic (plastic) volume changes. This dilatancy angle is not only a suitable parameter for the description of soils, but also appears to be useful for concrete and rock. Basically, the paper consists of three parts as the authors consider three types of models of increasing complexity. The first model is a perfectly-plastic model, which employs the five aforementioned parameters. It is based on test data. The second model is a straightforward extension of the first model by augmenting it with friction hardening and cohesion softening. This novel idea is introduced to account for the degradation of the cohesion of cemented granular materials with increasing inelastic deformation. The model is employed in an analysis which shows that plastic deformations tend to localize in thin shear bands. Finally, a review is given of concepts for modelling hysteresis and strain accumulation in cyclic loading. Refs.

Cite

CITATION STYLE

APA

Vermeer, P. A., & de Borst, R. (1984). NON-ASSOCIATED PLASTICITY FOR SOILS, CONCRETE AND ROCK. Heron, 29(3). https://doi.org/10.1007/978-94-017-2653-5_10

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free