The Atacama Large Millimeter/submillimeter Array (ALMA) is a general purpose telescope that performs a broad program of astrophysical observations. Beginning in late 2016, solar observations with ALMA became available, thereby opening a new window onto solar physics. Since then, the number of solar observing capabilities has increased substantially but polarimetric observations, a community priority, have not been available. Weakly circularly polarized emission is expected from the chromosphere where magnetic fields are strong. Hence, maps of Stokes V provide critical new constraints on the longitudinal component of the chromospheric magnetic field. Between 2019 and 2022, an ALMA solar development effort dedicated to making solar polarimetry at millimeter wavelengths a reality was carried out. Here, we discuss the development effort to enable solar polarimetry in the 3 mm band (ALMA Band 3) in detail and present a number of results that emerge from the development program. These include tests that validate polarization calibration, including evaluation of instrumental polarization: both antenna-based “leakage” terms and off-axis effects (termed “beam squint” for Stokes V). We also present test polarimetric observations of a magnetized source on the Sun, the following sunspot in a solar active region, which shows a significant Stokes V signature in line with expectations. Finally, we provide some cautions and guidance to users contemplating the use of polarization observations with ALMA.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Shimojo, M., Bastian, T. S., Kameno, S., & Hales, A. S. (2024). Observing the Sun with the Atacama Large Millimeter/Submillimeter Array (ALMA): Polarization Observations at 3 mm. Solar Physics, 299(2). https://doi.org/10.1007/s11207-024-02265-3