Aligned silicon nanofins via the directed self-assembly of PS-b-P4VP block copolymer and metal oxide enhanced pattern transfer

53Citations
Citations of this article
67Readers
Mendeley users who have this article in their library.

Abstract

'Directing' block copolymer (BCP) patterns is a possible option for future semiconductor device patterning, but pattern transfer of BCP masks is somewhat hindered by the inherently low etch contrast between blocks. Here, we demonstrate a 'fab' friendly methodology for forming well-registered and aligned silicon (Si) nanofins following pattern transfer of robust metal oxide nanowire masks through the directed self-assembly (DSA) of BCPs. A cylindrical forming poly(styrene)-block-poly(4-vinyl-pyridine) (PS-b-P4VP) BCP was employed producing 'fingerprint' line patterns over macroscopic areas following solvent vapor annealing treatment. The directed assembly of PS-b-P4VP line patterns was enabled by electron-beam lithographically defined hydrogen silsequioxane (HSQ) gratings. We developed metal oxide nanowire features using PS-b-P4VP structures which facilitated high quality pattern transfer to the underlying Si substrate. This work highlights the precision at which long range ordered ∼10 nm Si nanofin features with 32 nm pitch can be defined using a cylindrical BCP system for nanolithography application. The results show promise for future nanocircuitry fabrication to access sub-16 nm critical dimensions using cylindrical systems as surface interfaces are easier to tailor than lamellar systems. Additionally, the work helps to demonstrate the extension of these methods to a 'high χ' BCP beyond the size limitations of the more well-studied PS-b-poly(methyl methylacrylate) (PS-b-PMMA) system. This journal is

Cite

CITATION STYLE

APA

Cummins, C., Gangnaik, A., Kelly, R. A., Borah, D., O’Connell, J., Petkov, N., … Morris, M. A. (2015). Aligned silicon nanofins via the directed self-assembly of PS-b-P4VP block copolymer and metal oxide enhanced pattern transfer. Nanoscale, 7(15), 6712–6721. https://doi.org/10.1039/c4nr07679f

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free