Matrix metalloproteinase 2 (MMP-2) activation has been described as a "master switch" which triggers tumor spread and metastatic progression. We show here that type IV collagen, a major component of basement membranes, promotes MMP-2 activation by HT1080 cells. When plated on plastic, HT1080 cells constitutively processed the 66-kDa pro-MMP-2 into a 62kDa intermediate activated form, most probably through a membrane type (MT) 1 MMP-dependent mechanism. In the presence of type IV collagen, part of this intermediate form was further processed to fully activated 59-kDa MMP-2. This activation was prevented by tissue inhibitor of MMP (TIMP)-2 and a broad-spectrum hydroxamic acid-based synthetic MMP inhibitor (GI129471). Type IV collagen-mediated pro-MMP-2 activation did not involve either a transcriptional modulation of MMP-2, MT1-MMP, or TIMP-2 expression nor any alteration of MT1-MMP protein synthesis or processing. An inverse relationship between MMP-2 activation and the concentration of secreted TIMP-2 was observed. This is consistent with our previous report that TIMP-2 degradation is probably linked to the MT1-MMP-dependent MMP-2 activation mechanism. Because invasive tumor cells must breach basement membranes at different steps of the metastatic dissemination, the ability of HT1080 cells to activate pro-MMP-2 in the presence of type IV collagen might represent a key regulatory mechanism for the acquisition of an invasive potential. © 2000 Academic Press.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Maquoi, E., Frankenne, F., Noël, A., Krell, H. W., Grams, F., & Foidart, J. M. (2000). Type IV collagen induces matrix metalloproteinase 2 activation in HT1080 fibrosarcoma cells. Experimental Cell Research, 261(2), 348–359. https://doi.org/10.1006/excr.2000.5063