Crossover-free differential evolution algorithm to study the impact of mutation scale factor parameter

ISSN: 22773878
4Citations
Citations of this article
4Readers
Mendeley users who have this article in their library.

Abstract

The Differential Evolution (DE) algorithm, which is one of the popular optimization algorithms in the category of Evolutionary Algorithms (EAs), is known for its simplicity and wide applicability. Analysing and understanding the working nature of DE algorithm, for its further improvement, is an active research area in Evolutionary Computing (EC) field. In particular studying the role of its control parameters and their effects in its performance needs more attention. As an attempt in this direction, this paper presents evidences to showcase the role of the Scale Factor (F) parameter of DE algorithm through the plots generated based on the studies made from experimental results obtained through a well formulated experimental setup. The experimental set up includes five different benchmarking functions and a crossover-free DE algorithm, in which the crossover component is removed, for capturing better insights about the impact of F. The empirical evidences for the observed inferences are plotted as graphs.

Cite

CITATION STYLE

APA

Dhanalakshmy, D. M., Jeyakumar, G., & Velayutham, C. S. (2019). Crossover-free differential evolution algorithm to study the impact of mutation scale factor parameter. International Journal of Recent Technology and Engineering, 7(6), 1728–1737.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free