Throughout Earth history, almost all preserved organic matter has been incorporated in marine sediments deposited under oxygenated waters along continental margins. Given modern oceanic productivity and sediment burial rates of 50 × 1015 and 0.16 × 1015 gC yr-1, respectively, organic preservation in the marine environment is < 0.5% efficient. Although correlative information is often used to suggest that productivity, sediment accumulation rate, bottom water oxicity, and organic matter source are key variables, the mechanisms governing sedimentary organic matter preservation have remained unclear. The factors which directly determine preservation vary with depositional regime, but have in common a critical interaction between organic and inorganic materials over locally variable time scales. More than 90% of total sedimentary organic matter from a wide variety of marine depositional environments cannot be physically separated from its mineral matrix. This strongly associated organic component varies directly in concentration with sediment surface area and thus appears to be sorbed to mineral grains. Sediments accumulating outside deltas along continental shelves and upper slopes characteristically exhibit mineral surface area loadings approximately equivalent to a single molecular covering. These monolayer-equivalent coatings include a fraction of reversibly bound organic molecules that are intrinsically labile, but resist appreciable mineralization as they pass rapidly through oxygenated surface sediments and are preserved within underlying anoxic deposits. The delivery of mineral surface area is the primary control on organic matter preservation within these expansive coastal margin regions where roughly 45% of all organic carbon accumulates. Deltaic sediments account for roughly another 45% of global carbon burial, but often exhibit much less than monolayer-equivalent organic coatings. This pattern is seen in periodically oxygenated sediments off the mouth of the Amazon River, even though the component clastic minerals are discharged by the river with monolayer coatings. Comparably extensive losses of organic matter, including distinct particles such as pollen grains, occur in the surfaces of deep-sea turbidites in which long term reaction with O2 is clearly the causative factor. Sub-monolayer organic coatings also are observed in continental rise and abyssal plain sediments where slower accumulation rates and deeper O2 penetration depths result in increased oxygen exposure times and little (~ 5% of the global total) organic matter preservation. A transition zone between monolayer and sub-monolayer organic coatings apparently occurs on lower continental slopes, and is marked along the Washington coast by parallel offshore decreases in total organic matter and pollen between 2000-3000 m water depth. Sediments underlying highly productive, low-oxygen coastal waters such as off Peru and western Mexico are characteristically rich in organic matter, but account for only ~ 5% of total organic carbon burial. These sediments show a direct relationship between organic matter content and mineral surface area, but at organic loadings 2-5 times a monolayer equivalent. Organic materials sorbed in excess of a monolayer thus also may be partially protected. Such high sedimentary organic contents may result from equilibration with DOM-rich porewaters, or very brief O2 exposure times which allow preservation of extremely oxygen-sensitive organic materials such as pigments and unsaturated lipids. Thus organic matter preservation throughout much of the ocean may be controlled largely by competition between sorption at different protective thresholds and oxic degradation. Future research strategies should be specifically directed at delineating the mechanisms for organic matter preservation in marine sediments. In particular, special effort is needed to determine the amounts and types of sorbed organic materials and the nature of their bonding to mineral surfaces. The extent and dynamics with which organic molecules are partitioned between porewaters and solid phases also should be determined, as well as the effects of these phase associations on their reactivities toward chemical and biological agents. In addition, processes for slow oxic (and suboxic) degradation of organic materials bear investigation in deep-sea sediments, as well as in other extreme environments such as oxidizing turbidites, weathering shales, and soils. Such studies should include characterizations of hydrolysis-resistant organic materials and emphasize the complementary use of biochemical compositions with readily separable particles such as pollen to calibrate and typify the mechanisms and stages of sedimentary organic degradation. © 1995.
Mendeley helps you to discover research relevant for your work.