An improved extraction method enables the comprehensive analysis of lipids, proteins, metabolites and phytohormones from a single sample of leaf tissue under water-deficit stress

69Citations
Citations of this article
156Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Phytohormones play essential roles in the regulation of growth and development in plants. Plant hormone profiling is therefore essential to understand developmental processes and the adaptation of plants to biotic and/or abiotic stresses. Interestingly, commonly used hormone extraction and profiling methods do not adequately resolve other molecular entities, such as polar metabolites, lipids, starch and proteins, which would be required to comprehensively describe the continuing biological processes at a systematic level. In this article we introduce an updated version of a previously published liquid:liquid metabolite extraction protocol, which not only allows for the profiling of primary and secondary metabolites, lipids, starch and proteins, but also enables the quantitative analysis of the major plant hormone classes, including abscisic acid, auxins, cytokinins, jasmonates and salicylates, from a single sample aliquot. The optimization of the method, which uses the introduction of acidified water, enabling the complete purification of major plant hormones into the organic (methyl-tert-butyl-ether) phase, eliminated the need for solid-phase extraction for sample clean-up, and therefore reduces both sampling time and cost. As a proof-of-concept analysis, Arabidopsis thaliana plants were subjected to water-deficit stress, which were then profiled for hormonal, metabolic, lipidomic and proteomic changes. Surprisingly, we determined not only previously described molecular changes but also significant changes regarding the breakdown of specific galactolipids, followed by the substantial accumulation of unsaturated fatty-acid derivatives and diverse jasmonates in the course of adaptation to water-deficit stress.

References Powered by Scopus

TM4: A free, open-source system for microarray data management and analysis

4144Citations
N/AReaders
Get full text

MetaboAnalyst 3.0-making metabolomics more meaningful

2336Citations
N/AReaders
Get full text

On the Dependency of Cellular Protein Levels on mRNA Abundance

2037Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Salem, M. A., Yoshida, T., Perez de Souza, L., Alseekh, S., Bajdzienko, K., Fernie, A. R., & Giavalisco, P. (2020). An improved extraction method enables the comprehensive analysis of lipids, proteins, metabolites and phytohormones from a single sample of leaf tissue under water-deficit stress. Plant Journal, 103(4), 1614–1632. https://doi.org/10.1111/tpj.14800

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 45

56%

Researcher 24

30%

Professor / Associate Prof. 12

15%

Readers' Discipline

Tooltip

Agricultural and Biological Sciences 50

57%

Biochemistry, Genetics and Molecular Bi... 28

32%

Chemistry 5

6%

Engineering 4

5%

Save time finding and organizing research with Mendeley

Sign up for free