In this paper, we consider an entropy criterion to estimate the number of clusters arising from a mixture model. This criterion is derived from a relation linking the likelihood and the classification likelihood of a mixture. Its performance is investigated through Monte Carlo experiments, and it shows favorable results compared to other classical criteria.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Celeux, G., & Soromenho, G. (1996). An entropy criterion for assessing the number of clusters in a mixture model. Journal of Classification, 13(2), 195–212. https://doi.org/10.1007/BF01246098