Integrated machine learning and geospatial analysis enhanced gully erosion susceptibility modeling in the Erer watershed in Eastern Ethiopia

3Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Land degradation from gully erosion poses a significant threat to the Erer watershed in Eastern Ethiopia, particularly due to agricultural activities and resource exploitation. Identifying erosion-prone areas and underlying factors using advanced machine learning algorithms (MLAs) and geospatial analysis is crucial for addressing this problem and prioritizing adaptive and mitigating strategies. However, previous studies have not leveraged machine learning (ML) and GIS-based approaches to generate susceptibility maps identifying these areas and conditioning factors, hindering sustainable watershed management solutions. This study aimed to predict gully erosion susceptibility (GES) and identify underlying areas and factors in the Erer watershed. Four ML models, namely, XGBoost, random forest (RF), support vector machine (SVM), and artificial neural network (ANN), were integrated with geospatial analysis using 22 geoenvironmental predictors and 1,200 inventory points (70% used for training and 30% for testing). Model performance and robustness were validated through the area under the curve (AUC), accuracy, precision, sensitivity, specificity, kappa coefficient, F1 score, and logarithmic loss. The relative slope position is most influential, with 100% importance in SVM and RF and 95% importance in XGBoost, while annual rainfall (AR) dominated ANN (100% importance). Notably, XGBoost demonstrated robustness and superior prediction/mapping, achieving an AUC of 0.97, 91% accuracy, 92% precision, and 81% kappa while maintaining a low logloss (0.0394). However, SVM excelled in classifying gully resistant/susceptible areas (97% sensitivity, 98% specificity, and 91% F1 score). The ANN model predicted the most areas with very high gully susceptibility (13.74%), followed by the SVM (11.69%), XGBoost (10.65%), and RF (7.85%) models, while XGBoost identified the most areas with very low susceptibility (70.19%). The ensemble technique was employed to further enhance GES modeling, and it outperformed the individual models, achieving an AUC of 0.99, 93.5% accuracy, 92.5% precision, 97.5% sensitivity, 95.4% specificity, 85.8% kappa, and 94.9% F1 score. This technique also classified the GES of the watershed as 36.48% very low, 26.51% low, 16.24% moderate, 11.55% high, and 9.22% very high. Furthermore, district-level analyses revealed the most susceptible areas, including the Babile, Fedis, Harar, and Meyumuluke districts, with high GES areas of 32.4%, 21.3%, 14.3%, and 13.6%, respectively. This study offers robust and flexible ML models with comprehensive validation metrics to enhance GES modeling and identify gully prone areas and factors, thereby supporting decision-making for sustainable watershed conservation and land degradation prevention.

References Powered by Scopus

Random forests

96433Citations
N/AReaders
Get full text

XGBoost: A scalable tree boosting system

33634Citations
N/AReaders
Get full text

A caution regarding rules of thumb for variance inflation factors

7004Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Modeling of gully erosion by the method of smoothed multilevel estimation

0Citations
N/AReaders
Get full text

A Comprehensive Analysis of Soil Erosion in Coastal Areas Based on an Unmanned Aerial Vehicle and Deep Learning Approach

0Citations
N/AReaders
Get full text

Latent landslide hazard recognition in Fang County using synthetic aperture radar interferometry and geological data

0Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Gelete, T. B., Pasala, P., Abay, N. G., Woldemariam, G. W., Yasin, K. H., Kebede, E., & Aliyi, I. (2024). Integrated machine learning and geospatial analysis enhanced gully erosion susceptibility modeling in the Erer watershed in Eastern Ethiopia. Frontiers in Environmental Science, 12. https://doi.org/10.3389/fenvs.2024.1410741

Readers' Seniority

Tooltip

Lecturer / Post doc 3

50%

PhD / Post grad / Masters / Doc 2

33%

Researcher 1

17%

Readers' Discipline

Tooltip

Earth and Planetary Sciences 5

71%

Environmental Science 2

29%

Article Metrics

Tooltip
Mentions
News Mentions: 1

Save time finding and organizing research with Mendeley

Sign up for free