Applying divide and conquer to large scale pattern recognition tasks

1Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Rather than presenting a specific trick, this paper aims at providing a methodology for large scale, real-world classification tasks involving thousands of classes and millions of training patterns. Such problems arise in speech recognition, handwriting recognition and speaker or writer identification, just to name a few. Given the typically very large number of classes to be distinguished, many approaches focus on parametric methods to independently estimate class conditional likelihoods. In contrast, we demonstrate how the principles of modularity and hierarchy can be applied to directly estimate posterior class probabilities in a connectionist framework. Apart from offering better discrimination capability, we argue that a hierarchical classification scheme is crucial in tackling the above mentioned problems. Furthermore, we discuss training issues that have to be addressed when an almost infinite amount of training data is available. © Springer-Verlag Berlin Heidelberg 2012.

References Powered by Scopus

A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition

17055Citations
N/AReaders
Get full text

Induction of Decision Trees

15326Citations
N/AReaders
Get full text

A Survey of Decision Tree Classifier Methodology

3009Citations
N/AReaders
Get full text

Cited by Powered by Scopus

A divide-and-conquer strategy using feature relevance and expert knowledge for enhancing a data mining approach to bank telemarketing

27Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Fritsch, J., & Finke, M. (2012). Applying divide and conquer to large scale pattern recognition tasks. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7700 LECTURE NO, 311–338. https://doi.org/10.1007/978-3-642-35289-8_20

Readers over time

‘13‘14‘15‘17‘18‘19‘20‘21‘2201234

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 8

80%

Professor / Associate Prof. 1

10%

Researcher 1

10%

Readers' Discipline

Tooltip

Computer Science 7

58%

Engineering 3

25%

Decision Sciences 1

8%

Design 1

8%

Save time finding and organizing research with Mendeley

Sign up for free
0