Faster Algorithms for Quantitative Analysis of MCs and MDPs with Small Treewidth

8Citations
Citations of this article
2Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Discrete-time Markov Chains (MCs) and Markov Decision Processes (MDPs) are two standard formalisms in system analysis. Their main associated quantitative objectives are hitting probabilities, discounted sum, and mean payoff. Although there are many techniques for computing these objectives in general MCs/MDPs, they have not been thoroughly studied in terms of parameterized algorithms, particularly when treewidth is used as the parameter. This is in sharp contrast to qualitative objectives for MCs, MDPs and graph games, for which treewidth-based algorithms yield significant complexity improvements. In this work, we show that treewidth can also be used to obtain faster algorithms for the quantitative problems. For an MC with n states and m transitions, we show that each of the classical quantitative objectives can be computed in time, given a tree decomposition of the MC with width t. Our results also imply a bound of for each objective on MDPs, where is the number of strategy-iteration refinements required for the given input and objective. Finally, we make an experimental evaluation of our new algorithms on low-treewidth MCs and MDPs obtained from the DaCapo benchmark suite. Our experiments show that on low-treewidth MCs and MDPs, our algorithms outperform existing well-established methods by one or more orders of magnitude.

Cite

CITATION STYLE

APA

Asadi, A., Chatterjee, K., Goharshady, A. K., Mohammadi, K., & Pavlogiannis, A. (2020). Faster Algorithms for Quantitative Analysis of MCs and MDPs with Small Treewidth. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 12302 LNCS, pp. 253–270). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-59152-6_14

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free