Optimal penney ante strategy via correlation polynomial identities

4Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

In the game of Penney Ante two players take turns publicly selecting two distinct words of length n using letters from an alphabet Ω of size q. They roll a fair q sided die having sides labelled with the elements of Ω until the last n tosses agree with one player's word, and that player is declared the winner. For n ≥ 3 the second player has a strategy which guarantees strictly better than even odds. Guibas and Odlyzko have shown that the last n - 1 letters of the second player's optimal word agree with the initial n - 1 letters of the first player's word. We offer a new proof of this result when q ≥ 3 using correlation polynomial identities, and we complete the description of the second player's best strategy by characterizing the optimal leading letter. We also give a new proof of their conjecture that for q = 2 this optimal strategy is unique, and we provide a generalization of this result to higher q.

References Powered by Scopus

String overlaps, pattern matching, and nontransitive games

264Citations
N/AReaders
Get full text

Optimal Strategy for the First Player in the Penney Ante Game

5Citations
N/AReaders
Get full text

First Occurrence in Pairs of Long Words: A Penney-ante Conjecture of Pevzner

2Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Mathematical Puzzles: Revised Edition

0Citations
N/AReaders
Get full text

The Penney’s Game with Group Action

0Citations
N/AReaders
Get full text

Re-exploring the Penney-Ante Game

0Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Felix, D. (2006). Optimal penney ante strategy via correlation polynomial identities. Electronic Journal of Combinatorics, 13(1 R), 1–15. https://doi.org/10.37236/1061

Readers' Seniority

Tooltip

Professor / Associate Prof. 2

40%

Researcher 2

40%

Lecturer / Post doc 1

20%

Readers' Discipline

Tooltip

Mathematics 3

50%

Medicine and Dentistry 1

17%

Computer Science 1

17%

Chemistry 1

17%

Save time finding and organizing research with Mendeley

Sign up for free