Machine learning to forecast electricity hourly LCA impacts due to a dynamic electricity technology mix

6Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Conventional Life Cycle Assessment (LCA) that relies on static coefficients is usually based on yearly averages. However, the impacts of electricity supply vary remarkably on an hourly basis. Thus, a company production plan is reassessed to reduce selected LCA impacts due to electricity consumption. To achieve this, the company will need a forecast of hourly LCA impacts due to electricity consumption, which can be directly forecast with the Direct Forecasting (DF) approach. Alternatively, the Electricity Technological Mix Forecasting (ETMF) forecasts the electricity production of the technologies in the mix and subsequently linearly combines it with unitary LCA impact indicators. Here, we assessed different machine learning models to forecast two LCA impact indicators for the consumption of electricity in the Italy-North control zone. The feed-forward neural network (NN) with the ETMF approach was the best perfomer among the assessed forecasting models. In our dataset, recurrent neural networks (RNNs) performed worse than feed-forward neural networks. Due to its better forecasting performance, the ETMF approach was preferred over the DF approach. This was due to its flexibility and scalability with easy updates or expansion of the selected forecast indicators, and due to its ability to assess technology-specific errors in the forecasting. Finally, we propose to adopt the correlation of LCA impact indicators within the dataset to select indicators while avoiding unconscious burden-shifting.

Cite

CITATION STYLE

APA

Portolani, P., Vitali, A., Cornago, S., Rovelli, D., Brondi, C., Low, J. S. C., … Ballarino, A. (2022). Machine learning to forecast electricity hourly LCA impacts due to a dynamic electricity technology mix. Frontiers in Sustainability, 3. https://doi.org/10.3389/frsus.2022.1037497

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free