Daily rhythm of cerebral blood flow velocity

81Citations
Citations of this article
101Readers
Mendeley users who have this article in their library.

Abstract

Background: CBFV (cerebral blood flow velocity) is lower in the morning than in the afternoon and evening. Two hypotheses have been proposed to explain the time of day changes in CBFV: 1) CBFV changes are due to sleep-associated processes or 2) time of day changes in CBFV are due to an endogenous circadian rhythm independent of sleep. The aim of this study was to examine CBFV over 30 hours of sustained wakefulness to determine whether CBFV exhibits fluctuations associated with time of day. Methods: Eleven subjects underwent a modified constant routine protocol. CBFV from the middle cerebral artery was monitored by chronic recording of Transcranial Doppler (TCD) ultrasonography. Other variables included core body temperature (CBT), end-tidal carbon dioxide (EtCO2), blood pressure, and heart rate. Salivary dim light melatonin onset (DLMO) served as a measure of endogenous circadian phase position. Results: A non-linear multiple regression, cosine fit analysis revealed that both the CBT and CBFV rhythm fit a 24 hour rhythm (R2 = 0.62 and R2 = 0.68, respectively). Circadian phase position of CBT occurred at 6:05 am while CBFV occurred at 12:02 pm, revealing a six hour, or 90 degree difference between these two rhythms (t = 4.9, df = 10, p < 0.01). Once aligned, the rhythm of CBFV closely tracked the rhythm of CBT as demonstrated by the substantial correlation between these two measures (r = 0.77, p < 0.01). Conclusion: In conclusion, time of day variations in CBFV have an approximately 24 hour rhythm under constant conditions, suggesting regulation by a circadian oscillator. The 90 degree-phase angle difference between the CBT and CBFV rhythms may help explain previous findings of lower CBFV values in the morning. The phase difference occurs at a time period during which cognitive performance decrements have been observed and when both cardiovascular and cerebrovascular events occur more frequently. The mechanisms underlying this phase angle difference require further exploration. © 2005 Conroy et al; licensee BioMed Central Ltd.

References Powered by Scopus

Circadian Variation in the Frequency of Onset of Acute Myocardial Infarction

1749Citations
N/AReaders
Get full text

Cerebral autoregulation dynamics in humans

1382Citations
N/AReaders
Get full text

On the Regulation of the Blood‐supply of the Brain

1304Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Integration of cerebrovascular CO<inf>2</inf> reactivity and chemoreflex control of breathing: Mechanisms of regulation, measurement, and interpretation

472Citations
N/AReaders
Get full text

Circadian clocks: Regulators of endocrine and metabolic rhythms

366Citations
N/AReaders
Get full text

The discovery of fire by humans: A long and convoluted process

210Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Conroy, D. A., Spielman, A. J., & Scott, R. Q. (2005). Daily rhythm of cerebral blood flow velocity. Journal of Circadian Rhythms, 3. https://doi.org/10.1186/1740-3391-3-3

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 43

61%

Professor / Associate Prof. 15

21%

Researcher 12

17%

Lecturer / Post doc 1

1%

Readers' Discipline

Tooltip

Medicine and Dentistry 19

36%

Agricultural and Biological Sciences 14

26%

Neuroscience 11

21%

Engineering 9

17%

Save time finding and organizing research with Mendeley

Sign up for free