Bietti crystalline corneoretinal dystrophy (BCD) is an autosomal recessive retinal degenerative disease characterized by yellow-white crystal deposits in the posterior pole, degeneration of the retinal pigment epithelium (RPE), and sclerosis of the choroid. Mutations in the cytochrome P450 4V2 gene (CYP4V2) cause BCD, which is associated with lipid metabolic disruption. The use of gene-replacement therapy in BCD has been hampered by the lack of disease models. To advance CYP4V2 gene-replacement therapy, we generated BCD patient-specific induced pluripotent stem cell (iPSC)-RPE cells and Cyp4v3 knockout (KO) mice as disease models and AAV2/8-CAG-CYP4V2 as treatment vectors. We demonstrated that after adeno-associated virus (AAV)-mediated CYP4V2 gene-replacement therapy BCD-iPSC-RPE cells presented restored cell survival and reduced lipid droplets accumulation; restoration of vision in Cyp4v3 KO mice was revealed by elevated electroretinogram amplitude and ameliorated RPE degeneration. These results suggest that AAV-mediated gene-replacement therapy in BCD patients is a promising strategy.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Jia, R., Meng, X., Chen, S., Zhang, F., Du, J., Liu, X., & Yang, L. (2023). AAV-mediated gene-replacement therapy restores viability of BCD patient iPSC derived RPE cells and vision of Cyp4v3 knockout mice. Human Molecular Genetics, 32(1), 122–138. https://doi.org/10.1093/hmg/ddac181