Diving in the Arctic: Cold Water Immersion’s Effects on Heart Rate Variability in Navy Divers

20Citations
Citations of this article
60Readers
Mendeley users who have this article in their library.

Abstract

Introduction: Diving close to the Arctic circle means diving in cold water regardless of the time of year. The human body reacts to cold through autonomous nervous system (ANS)-mediated thermoregulatory mechanisms. Diving also induces ANS responses as a result of the diving reflex. Materials and Methods: In order to study ANS responses during diving in Arctic water temperatures, we retrospectively analyzed repeated 5-min heart rate variability (HRV) measures and the mean body temperature from dives at regular intervals using naval diving equipment measurement tests in 0°C water. Three divers performed seven dives without physical activity (81–91 min), and two divers performed four dives with physical activity after 10 min of diving (0–10 min HRV recordings were included in the study). Results: Our study showed a significant increase in parasympathetic activity (PNS) at the beginning of the dives, after which PNS activity decreased significantly (measure 5–10 min). Subsequent measurements (15–20 min and onward) showed a significant increase in PNS activity over time. Conclusion: Our results suggest that the first PNS responses of the human diving reflex decrease quickly. Adverse effects of PNS activity should be considered on long and cold dives. To avoid concurrent sympathetic (SNS) and PNS activity at the beginning of dives, which in turn may increase the risk of arrhythmia in cold water, we suggest a short adaptation phase before physical activity. Moreover, we suggest it is prudent to give special attention to cardiovascular risk factors during pre-dive examinations for cold water divers.

Cite

CITATION STYLE

APA

Lundell, R. V., Räisänen-Sokolowski, A. K., Wuorimaa, T. K., Ojanen, T., & Parkkola, K. I. (2020). Diving in the Arctic: Cold Water Immersion’s Effects on Heart Rate Variability in Navy Divers. Frontiers in Physiology, 10. https://doi.org/10.3389/fphys.2019.01600

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free