Silk fibroin, derived from Bombyx mori cocoons, is a widely used and studied protein polymer for biomaterial applications. Silk fibroin has remarkable mechanical properties when formed into different materials, demonstrates biocompatibility, has controllable degradation rates from hours to years and can be chemically modified to alter surface properties or to immobilize growth factors. A variety of aqueous or organic solvent-processing methods can be used to generate silk biomaterials for a range of applications. In this protocol, we include methods to extract silk from B. mori cocoons to fabricate hydrogels, tubes, sponges, composites, fibers, microspheres and thin films. These materials can be used directly as biomaterials for implants, as scaffolding in tissue engineering and in vitro disease models, as well as for drug delivery. © 2011 Nature America, Inc. All rights reserved.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Rockwood, D. N., Preda, R. C., Yücel, T., Wang, X., Lovett, M. L., & Kaplan, D. L. (2011). Materials fabrication from Bombyx mori silk fibroin. Nature Protocols, 6(10), 1612–1631. https://doi.org/10.1038/nprot.2011.379