Overexpression of MsRCI2A, MsRCI2B, and MsRCI2C in Alfalfa (Medicago sativa L.) Provides Different Extents of Enhanced Alkali and Salt Tolerance Due to Functional Specialization of MsRCI2s

8Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Rare cold-inducible 2/plasma membrane protein 3 (RCI2/PMP3) genes are ubiquitous in plants and belong to a multigene family whose members respond to a variety of abiotic stresses by regulating ion homeostasis and stabilizing membranes, thus preventing damage. In this study, the expression of MsRCI2A, MsRCI2B, and MsRCI2C under high-salinity, alkali and ABA treatments was analyzed. The results showed that the expression of MsRCI2A, MsRCI2B, and MsRCI2C in alfalfa (Medicago sativa L.) was induced by salt, alkali and ABA treatments, but there were differences between MsRCI2 gene expression under different treatments. We investigated the functional differences in the MsRCI2A, MsRCI2B, and MsRCI2C proteins in alfalfa (Medicago sativa L.) by generating transgenic alfalfa plants that ectopically expressed these MsRCI2s under the control of the CaMV35S promoter. The MsRCI2A/B/C-overexpressing plants exhibited different degrees of improved phenotypes under high-salinity stress (200 mmol.L–1 NaCl) and weak alkali stress (100 mmol.L–1 NaHCO3, pH 8.5). Salinity stress had a more significant impact on alfalfa than alkali stress. Overexpression of MsRCI2s in alfalfa caused the same physiological response to salt stress. However, in response to alkali stress, the three proteins encoded by MsRCI2s exhibited functional differences, which were determined not only by their different expression regulation but also by the differences in their regulatory relationship with MsRCI2s or H+-ATPase.

Cite

CITATION STYLE

APA

Li, C., Song, T., Zhan, L., Cong, C., Xu, H., Dong, L., & Cai, H. (2021). Overexpression of MsRCI2A, MsRCI2B, and MsRCI2C in Alfalfa (Medicago sativa L.) Provides Different Extents of Enhanced Alkali and Salt Tolerance Due to Functional Specialization of MsRCI2s. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.702195

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free