Let $\Omega\subset R^N$ be bounded Lipschitz and $\emptyseteq\Gamma\subset \partial\Omega$ relatively open. We show that the solution to the linear first order system 1 : vanishes if $G \in {\rm L}^1(\Omega;{\rm I\!R}^{(N \times N)\times N})$ and $\zeta \in {\rm W}^{1,1}(\Omega;{\rm I\!R}^N)$ , (e.g. $\zeta \in L^2, G \in L^2$ ). We prove to be a norm if $P \in {\rm L}^\infty (\Omega;{\rm I\!R}^{3\times 3})$ with ${\rm Curl}\; P \in {\rm L}^p (\Omega;{\rm I\!R}^{3\times 3})$ , ${\rm Curl}\; P^{-1} \in {\rm L}^q (\Omega;{\rm I\!R}^{3\times 3})$ for some p, q > 1 with 1/p + 1/q = 1 and ${\rm det}P \geq c^{+} > 0$ . We give a new proof for the so called ‘in‐finitesimal rigid displacement lemma’ in curvilinear coordinates: Let $\Phi \in {\rm H}^1(\Omega;{\rm I\!R}^{3}), \Omega \in {\rm I\!R}^{3}$ , satisfy ${\rm sym} (abla\Phi^{\rm T} abla\Psi) = 0$ for some $\Psi \in {\rm W}^{1,\infty} (\Omega;{\rm I\!R}^{3}) \cap {\rm H}^2 (\Omega;{\rm I\!R}^{3})$ with ${\rm det}abla\Psi \geq c^{+} > 0$ . Then there are $a \in {\rm I\!R}^{3}$ and a constant skew‐symmetric matrix $A \in {\rm so}(3)$ , such that $\Phi = A\Psi +a$ . (© 2013 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)
CITATION STYLE
Lankeit, J., Neff, P., & Pauly, D. (2013). Uniqueness of Integrable Solutions ∇ζ = G ζ, ζ∣ Γ = 0 for Integrable Tensor‐Coefficients G and Applications to Elasticity. PAMM, 13(1), 361–362. https://doi.org/10.1002/pamm.201310176
Mendeley helps you to discover research relevant for your work.