A series of Pt–yLi2B4O7/WOx/ZrO2 (y = 0, 0.5, 1, 2 wt%) catalysts were prepared by varying the content of Li2B4O7 through the method of coimpregnation-calcination. The obtained catalysts were used for the selective hydrogenolysis of glycerol to 1,3-propanediol. Meanwhile, these catalysts were characterized by N2 adsorption and desorption (BET), CO chemisorption, X-ray diffraction (XRD), NH3-temperature programmed desorption (NH3-TPD), H2-temperature programmed reduction (H2-TPR), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The results showed that Pt–1Li2B4O7/WOx/ZrO2 achieved the highest activity with glycerol conversion of 90.7% at 150 °C and 4 MPa and exhibited excellent stability over 200 h. Pt/WOx/ZrO2 catalyst modified with Li2B4O7 was able to enhance catalytic activity and stability, since Li2B4O7 promoted the dispersion of Pt, increased the acid amount of the catalyst and strengthened the interaction between active components and support.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Zhu, M., & Chen, C. (2018). Hydrogenolysis of glycerol to 1,3-propanediol over Li2B4O7-modified tungsten–zirconium composite oxides supported platinum catalyst. Reaction Kinetics, Mechanisms and Catalysis, 124(2), 683–699. https://doi.org/10.1007/s11144-018-1379-z