Fusarium and Sarocladium Species Associated with Rice Sheath Rot Disease in Sub-Saharan Africa

5Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Sarocladium and Fusarium species are commonly identified as causal agents of rice sheath rot disease worldwide. However, limited knowledge exists about their genetic, pathogenic, and toxigenic diversity in sub-Saharan African (SSA) countries, where an increasing incidence of this disease has been observed. In this study, seventy fungal isolates were obtained from rice plants displaying disease symptoms in rice research programs and farmer fields in Mali, Nigeria, and Rwanda. Thus, an extensive comparative analysis was conducted to assess their genetic, pathogenic, and toxigenic diversity. The Fusarium spp. were characterized using the translation elongation factor (EF-1α) region, while a concatenation of Internal Transcribed Spacer (ITS) and Actin-encoding regions were used to resolve Sarocladium species. Phylogenetic analysis revealed four Fusarium species complexes. The dominant complex in Nigeria was the Fusarium incarnatum-equiseti species complex (FIESC), comprising F. hainanense, F. sulawesiense, F. pernambucatum, and F. tanahbumbuense, while F. incarnatum was found in Rwanda. The Fusarium fujikuroi species complex (FFSC) was predominant in Rwanda and Mali, with species such as F. andiyazi, F. madaense, and F. casha in Rwanda and F. annulatum and F. nygamai in Mali. F. marum was found in Nigeria. Furthermore, Fusarium oxysporum species complex (FOSC) members, F. callistephi and F. triseptatum, were found in Rwanda and Mali, respectively. Two isolates of F. acasiae-mearnsii, belonging to the Fusarium sambucinum species complex (FSAMSC), were obtained in Rwanda. Isolates of Sarocladium, which were previously classified into three phylogenetic groups, were resolved into three species, which are attenuatum, oryzae, and sparsum. S. attenuatum was dominant in Rwanda, while S. oryzae and S. sparsum were found in Nigeria. Also, the susceptibility of FARO44, a rice cultivar released by Africa Rice Centre (AfricaRice), was tested against isolates from the four Fusarium species complexes and the three Sarocladium species. All isolates evaluated could induce typical sheath rot symptoms, albeit with varying disease development levels. In addition, liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine variation in the in vitro mycotoxins of the Fusarium species. Regional differences were observed in the in vitro mycotoxins profiling. Out of the forty-six isolates tested, nineteen were able to produce one to four mycotoxins. Notably, very high zearalenone (ZEN) production was specific to the two F. hainanense isolates from Ibadan, Nigeria, while Fusarium nygamai isolates from Mali produced high amounts of fumonisins. To the best of our knowledge, it seems that this study is the first to elucidate the genetic, pathogenic, and toxigenic diversity of Fusarium species associated with the rice sheath rot disease complex in selected countries in SSA.

References Powered by Scopus

MEGA11: Molecular Evolutionary Genetics Analysis Version 11

11082Citations
N/AReaders
Get full text

Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation

6097Citations
N/AReaders
Get full text

Multiple evolutionary origins of the fungus causing panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies

1951Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Untargeted metabolomics and molecular docking studies on green silver nanoparticles synthesized by Sarocladium subulatum: Exploring antibacterial and antioxidant properties

2Citations
N/AReaders
Get full text

Fusarium species causing root rot and wilt in tomato in Brazil

2Citations
N/AReaders
Get full text

Effects of Nutrient Accumulation and Microbial Community Changes on Tomato Fusarium Wilt Disease in Greenhouse Soil

1Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Afolabi, O. O., Bigirimana, V. de P., Hua, G. K. H., Oni, F. E., Bertier, L., Onwughalu, J., … Höfte, M. (2023). Fusarium and Sarocladium Species Associated with Rice Sheath Rot Disease in Sub-Saharan Africa. Diversity, 15(10). https://doi.org/10.3390/d15101090

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 8

80%

Researcher 2

20%

Readers' Discipline

Tooltip

Agricultural and Biological Sciences 8

80%

Economics, Econometrics and Finance 1

10%

Arts and Humanities 1

10%

Save time finding and organizing research with Mendeley

Sign up for free