Transcriptome and Metabolome Analyses Revealed the Response Mechanism of Sugar Beet to Salt Stress of Different Durations

18Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

Salinity is one of the most serious threats to agriculture worldwide. Sugar beet is an important sugar-yielding crop and has a certain tolerance to salt; however, the genome-wide dynamic response to salt stress remains largely unknown in sugar beet. In the present study, physiological and transcriptome analyses of sugar beet leaves and roots were compared under salt stress at five time points. The results showed that different salt stresses influenced phenotypic characteristics, leaf relative water content and root activity in sugar beet. The contents of chlorophyll, malondialdehyde (MDA), the activities of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) were also affected by different salt stresses. Compared with control plants, there were 7391 and 8729 differentially expressed genes (DEGs) in leaves and roots under salt stress, respectively. A total of 41 hub genes related to salt stress were identified by weighted gene co-expression network analysis (WGCNA) from DEGs, and a transcriptional regulatory network based on these genes was constructed. The expression pattern of hub genes under salt stress was confirmed by qRT-PCR. In addition, the metabolite of sugar beet was compared under salt stress for 24 h. A total of 157 and 157 differentially accumulated metabolites (DAMs) were identified in leaves and roots, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis further indicated that DEGs and DAMs act on the starch and sucrose metabolism, alpha-linolenic acid metabolism, phenylpropanoid biosynthesis and plant hormone signal transduction pathway. In this study, RNA-seq, WGCNA analysis and untargeted metabolomics were combined to investigate the transcriptional and metabolic changes of sugar beet during salt stress. The results provided new insights into the molecular mechanism of sugar beet response to salt stress, and also provided candidate genes for sugar beet improvement.

References Powered by Scopus

Cytoscape: A software Environment for integrated models of biomolecular interaction networks

35605Citations
N/AReaders
Get full text

Gene ontology: Tool for the unification of biology

32484Citations
N/AReaders
Get full text

edgeR: A Bioconductor package for differential expression analysis of digital gene expression data

28927Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Combined transcriptomic and metabolomic analyses elucidate key salt-responsive biomarkers to regulate salt tolerance in cotton

23Citations
N/AReaders
Get full text

Metabolome and transcriptome analysis reveals molecular mechanisms of watermelon under salt stress

23Citations
N/AReaders
Get full text

Understanding of Plant Salt Tolerance Mechanisms and Application to Molecular Breeding

5Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Cui, J., Li, J., Dai, C., & Li, L. (2022). Transcriptome and Metabolome Analyses Revealed the Response Mechanism of Sugar Beet to Salt Stress of Different Durations. International Journal of Molecular Sciences, 23(17). https://doi.org/10.3390/ijms23179599

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 4

80%

Lecturer / Post doc 1

20%

Readers' Discipline

Tooltip

Agricultural and Biological Sciences 4

57%

Biochemistry, Genetics and Molecular Bi... 1

14%

Engineering 1

14%

Business, Management and Accounting 1

14%

Save time finding and organizing research with Mendeley

Sign up for free