The Effect of Loading Direction on Slip and Twinning in an Irradiated Zirconium Alloy

5Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In this study, deformation experiments together with high-resolution digital image correlation were used to quantify the effect of proton irradiation on strain localization in Zircaloy-4 loaded along the rolling and transverse directions. Significant increases in strain heterogeneity were measured in the irradiated material compared to the nonirradiated material. This was a result of confinement of slip to channels in the irradiated material, which contain high effective shear strain values, with almost no strain in the regions between channels. The active slip systems in the material were also determined by comparing experimental slip trace angles from high-resolution digital image correlation with theoretical slip trace angles determined using grain orientation from electron backscatter diffraction. An increased amount of pyramidal and wavy basal slip, as well as tension twinning, were observed in the sample loaded along the transverse direction, compared to the sample loaded along the rolling direction, due to crystallographic texture. No significant change in slip system activity was observed as a result of 0.1 dpa proton irradiation, despite the dramatic change in slip pattern. The findings provide further insight into the role of irradiation on deformation behavior and provide quantitative data on slip system activation, for as-received and irradiated Zircaloy-4, against which to validate models.

Cite

CITATION STYLE

APA

Thomas, R., Lunt, D., Atkinson, M. D., da Fonseca, J. Q., Preuss, M., Barton, F., … Frankel, P. (2021). The Effect of Loading Direction on Slip and Twinning in an Irradiated Zirconium Alloy. In ASTM Special Technical Publication (Vol. STP 1622, pp. 233–261). ASTM International. https://doi.org/10.1520/STP162220190027

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free