As an essential member of group-V layered materials, gray arsenic (g-As) has recently begun to draw researchers’ attention due to fantastic physical properties predicted by theoretical calculation. However, g-As presents semimetal behavior as the thickness exceeds bilayers, which hinders its further device applications, such as in logic electronics. Herein, we report the growth of high quality gray arsenic-phosphorus-tin (g-AsPSn) alloys via a simple one-step chemical vapor transport process. The as-grown g-AsPSn alloy remains the same layered rhombohedral structure as g-As, while the g-AsPSn alloy shows an opened bandgap compared with g-As. Infrared absorption and photoluminescence spectra reveal a narrow optical bandgap of 0.2 eV. A field effect transistor based on few-layer g-AsPSn alloy flakes shows a typical p-type semiconductor behavior and a relatively high mobility of ∼66 cm2 V−1 S−1 under ambient conditions. It can be envisioned that the synthesized two-dimensional layered narrow-gap g-AsPSn alloy presents considerable potential applications in electronics and infrared optoelectronics.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Chen, C., Li, C., Yu, Q., Shi, X., Zhang, Y., Chen, J., … Zhang, K. (2021). Bandgap opening in layered gray arsenic alloy. APL Materials, 9(4). https://doi.org/10.1063/5.0042050