A Deep Generative Model of Neonatal Cortical Surface Development

0Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The neonatal cortical surface is known to be affected by preterm birth, and the subsequent changes to cortical organisation have been associated with poorer neurodevelopmental outcomes. Deep Generative models have the potential to lead to clinically interpretable models of disease, but developing these on the cortical surface is challenging since established techniques for learning convolutional filters are inappropriate on non-flat topologies. To close this gap, we implement a surface-based CycleGAN using mixture model CNNs (MoNet) to translate sphericalised neonatal cortical surface features (curvature and T1w/T2w cortical myelin) between different stages of cortical maturity. Results show our method is able to reliably predict changes in individual patterns of cortical organisation at later stages of gestation, validated by comparison to longitudinal data; and translate appearance between preterm and term gestation (>37 weeks gestation), validated through comparison with a trained term/preterm classifier. Simulated differences in cortical maturation are consistent with observations in the literature.

Cite

CITATION STYLE

APA

Fawaz, A., Williams, L. Z. J., Edwards, A. D., & Robinson, E. C. (2022). A Deep Generative Model of Neonatal Cortical Surface Development. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 13413 LNCS, pp. 469–481). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-031-12053-4_35

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free