The Epidermal Growth Factor Receptor (EGFR), or ErbB1, is a member of the ErbB family of tyrosine kinase receptors. It is a 170 kDa transmembrane glycoprotein that can bind a variety of ligands on its extracellular domain, most notably Epidermal Growth Factor (EGF). Binding of ligand induces homo- or heterodimerization with a second EGFR molecule or another member of the ErbB family, respectively. Once dimerized, the molecule undergoes auto-phosphorylation on intracellular tyrosine residues. Phosphorylation of these tyrosine residues allows for recruitment of ATP to the catalytic kinase domain of EGFR, which allows for phosphorylation of effector molecules. Thus, a phosphorylation cascade is set off, leading to activation of various intracellular signaling pathways that have been implicated in tumorigenesis and cancer progression, including the RAS/MAPK (mitogen-activated protein kinase), PI3K (phosphoinositide 3-kinase)/ AKT, and STAT3 (signal transducer and activator of transcription 3) pathways
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Weintraub, M. D. (2013). Targeting the Epidermal Growth Factor Receptor in Bladder Cancer. Journal of Carcinogenesis & Mutagenesis, 04(02). https://doi.org/10.4172/2157-2518.1000143