An analytical model for spatially varying clear-sky co2 forcing

25Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Clear-sky CO2 forcing is known to vary significantly over the globe, but the state dependence that controls this is not well understood. Here we extend the formalism of Wilson and Gea-Banacloche to obtain a quantitatively accurate analytical model for spatially varying instantaneous CO2 forcing, which depends only on surface temperature Ts, stratospheric temperature, and column relative humidity (RH). This model shows that CO2 forcing can be considered a swap of surface emission for stratospheric emission, and thus depends primarily on surface stratosphere temperature contrast. The strong meridional gradient in CO2 forcing is thus largely due to the strong meridional gradient in Ts. In the tropics and midlatitudes, however, the presence of H2O modulates the forcing by replacing surface emission with RH-dependent atmospheric emission. This substantially reduces the forcing in the tropics, introduces forcing variations due to spatially varying RH, and sets an upper limit (with respect to Ts variations) on CO2 forcing that is reached in the present-day tropics. In addition, we extend our analytical model to the instantaneous tropopause forcing, and find that this forcing depends on Ts only, with no dependence on stratospheric temperature. We also analyze the t 5 1 approximation for the emission level and derive an exact formula for the emission level, which yields values closer to t 5 1/2 than to t 5 1.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Jeevanjee, N., Seeley, J. T., Paynter, D., & Fueglistaler, S. (2021). An analytical model for spatially varying clear-sky co2 forcing. Journal of Climate, 34(23), 9463–9480. https://doi.org/10.1175/JCLI-D-19-0756.1

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 7

78%

Lecturer / Post doc 1

11%

Researcher 1

11%

Readers' Discipline

Tooltip

Earth and Planetary Sciences 8

80%

Physics and Astronomy 1

10%

Mathematics 1

10%

Article Metrics

Tooltip
Mentions
Blog Mentions: 1

Save time finding and organizing research with Mendeley

Sign up for free