In computer and system sciences, higher-order cellular automata (HOCA) are a type of cellular automata that evolve over multiple time steps and generate complex patterns, which have various applications, such as secret-sharing schemes, data compression, and image encryption. In this paper, we introduce HOCA to quantum many-body physics and construct a series of symmetry-protected topological (SPT) phases of matter, in which symmetries are supported on a great variety of subsystems embbeded in the SPT bulk. We call these phases HOCA-generated SPT (HGSPT) phases. Specifically, we show that HOCA can generate not only well-understood SPTs with symmetries supported on either regular (e.g., linelike subsystems in the two-dimensional cluster model) or fractal subsystems, but also a large class of unexplored SPTs with symmetries supported on more choices of subsystems. One example is mixed-subsystem SPT that has either fractal and linelike subsystem symmetries simultaneously or two distinct types of fractal symmetries simultaneously. Another example is chaotic-subsystem SPT in which chaotic-looking symmetries are significantly different from and thus cannot reduce to fractal or regular subsystem symmetries. We also introduce a new notation system to characterize HGSPTs. We prove that all possible subsystem symmetries in a square lattice can be locally simulated by an HOCA-generated symmetry. As the usual two-point strange correlators are trivial in most HGSPTs, we find that the nontrivial SPT orders can be detected by what we call multi point strange correlators. We propose a universal procedure to design the spatial configuration of the multi point strange correlators for a given HGSPT phase. Specifically, we find deep connections between multi point strange correlators and the spurious topological entanglement entropy (STEE), both exhibiting long-range behavior in a short-range entangled state. Our HOCA approaches and multi point strange correlators pave the way for a unified paradigm to design, classify, and detect phases of matter with symmetries supported on a great variety of subsystems, and also provide potential useful perspective in surpassing the computational irreducibility of HOCA in a quantum mechanical way.
CITATION STYLE
Zhang, J. Y., Li, M. Y., & Ye, P. (2024). Higher-Order Cellular Automata Generated Symmetry-Protected Topological Phases and Detection Through Multi Point Strange Correlators. PRX Quantum, 5(3). https://doi.org/10.1103/PRXQuantum.5.030342
Mendeley helps you to discover research relevant for your work.