Multi-scale microscopy study of 3D morphology and structure of MoNi4/MoO2@Ni electrocatalytic systems for fast water dissociation

1Citations
Citations of this article
3Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The 3D morphology of hierarchically structured electrocatalytic systems is determined based on multi-scale X-ray computed tomography (XCT), and the crystalline structure of electrocatalyst nanoparticles is characterized using transmission electron microscopy (TEM), supported by X-ray diffraction (XRD) and spatially resolved near-edge X-ray absorption fine structure (NEXAFS) studies. The high electrocatalytic efficiency for hydrogen evolution reaction (HER) of a novel transition-metal-based material system – MoNi4 electrocatalysts anchored on MoO2 cuboids aligned on Ni foam (MoNi4/MoO2@Ni) – is based on advantageous crystalline structures and chemical bonding. High-resolution TEM images and selected-area electron diffraction patterns are used to determine the crystalline structures of MoO2 and MoNi4. Multi-scale XCT provides 3D information of the hierarchical morphology of the MoNi4/MoO2@Ni material system nondestructively: Micro-XCT images clearly resolve the Ni foam and the attached needle-like MoO2 micro cuboids. Laboratory nano-XCT shows that the MoO2 micro cuboids with a rectangular cross-section of 0.5 × 1 µm2 and a length of 10–20 µm are vertically arranged on the Ni foam. MoNi4 nanoparticles with a size of 20–100 nm, positioned on single MoO2 cuboids, were imaged using synchrotron radiation nano-XCT. The application of a deep convolutional neural network (CNN) significantly improves the reconstruction quality of the acquired data.

References Powered by Scopus

Practical cone-beam algorithm

5567Citations
N/AReaders
Get full text

Efficient hydrogen production on MoNi 4 electrocatalysts with fast water dissociation kinetics

1027Citations
N/AReaders
Get full text

Nickel-based electrocatalysts for energy-related applications: Oxygen reduction, oxygen evolution, and hydrogen evolution reactions

967Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Nanoscale spectromicroscopy with the full-field X-ray microscope at the BESSY II electron storage ring in the soft and tender X-ray range

2Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Zschech, E., Topal, E., Kutukova, K., Gluch, J., Löffler, M., Werner, S., … Timoshenko, J. (2022). Multi-scale microscopy study of 3D morphology and structure of MoNi4/MoO2@Ni electrocatalytic systems for fast water dissociation. Micron, 158. https://doi.org/10.1016/j.micron.2022.103262

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 1

100%

Readers' Discipline

Tooltip

Biochemistry, Genetics and Molecular Bi... 1

50%

Chemistry 1

50%

Save time finding and organizing research with Mendeley

Sign up for free